MATH 584 - Singularity Theory (selected topics in Algebra and topology)

Semester: Instructors:	Spring 2024 Ferit Öztürk; office: TB260-B, phone: 6532; ferit.ozturk@boun
Exams & Grading:	Single final exam (30 %) 7 homework assignments (70 %)
Course Schedule:	TB130 Tue 15:00-17:00, Th 16:00-17:00
Course web page:	https://feritozturk.github.io/here/m584.html
Textbooks:	 J.W. Milnor Singular points of complex hypersurfaces, Princeton University Press, 1968. E. Brieskorn, H. Knörrer Plane algebraic curves, Modern Birkhäuser Classics, 2012. C.T.C. Wall Singular points of plane curves, Cambridge University Press, 2004.
Sources:	 J.W. Milnor Topology from the differentiable viewpoint, Princeton University Press, 1965. V. Guillemin, A. Pollack Differential topology, AMS Chelsea Publishing, 1974. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko Singularities of Differentiable Maps I, Monographs in Mathematics Birkhäuser, 1985. F. Kirwan Complex Algebraic Curves, London Mathematical Society Student Texts, 1992. M. Reid Undergraduate Algebraic Geometry, London Mathematical Society Student Texts, 2001.
Course Content:	(Order may change) Differentiable maps, Implicit Function Theorem, Manifolds in \mathbb{R}^n ; Singularities; Sard's theorem; Algebraic varieties, Zariski topology, Nullstellensatz; Plane curves, Puiseux' theorems, Newton polygon; Branches, Multiplicities, Tangents; Resolution of singularities; Simple singularities; Milnor fibration, Topology of fibers.
Prerequisite:	This course is intended to be accessible for all graduate students and very advanced undergraduates. The aim is to acquire general knowledge on a track of comtemporary geometry and topology. No official prerequisites. Please negotiate with me if you plan to take the course.