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Abstract

The second order jet group G2 projects onto G1 with kernel K2. We denote this exact
sequence by Φ and its Lie algebra analogue by LΦ. For a Lie group G ⊂ G1 and a kernel
V ⊂ K2 for G, we define the vector space H2(G,V,Φ) of extensions of G by V restricted to Φ
and its Lie algebra analogue H2(g,V,LΦ). We give examples where dim H2(g,V,LΦ) 6= 0
whereas dim H2(g,V) = 0.

1. Introduction

Let Gi(n) = GLi(n,R) be the set of i-jets ji(f)0 of local diffeomorphisms f with source and target
at the origin 0 ∈ Rn where i = 1, 2 in this paper. Gi(n) is a Lie group with the group operation
induced by composition of jets: ji(f)0 ◦ ji(g)0 = ji(f ◦ g)0. We have the projection homomorphism
π : G2(n)→ G1(n) with kernel K2(n) which is a vector space. Let S ⊂ G2(n) be a Lie subgroup such
that the kernel V of π|S is a subspace of K2(n). Let G = π(S) ⊂ G1(n).

In this paper, we will be concerned with the following question
QA : Can S contain any information not contained in G?
For instance, the homotopy exact sequence of the fibration V → S → G shows that πi(S) =

πi(G), i = 1, 2, . . . , so that S does not contain any new information from topological viewpoint. On
the other hand, it follows from [Ter78] that S may have representations which are not obtained by
prolonging a representation of G.

We may now ask the global analogue of QA: Let M be a differentiable manifold with dim
M = n and P (M,S) → M be an S-structure on M , i.e. P (M,S) is a reduction of the structure
group G2(n) of the second order frame bundle F (M,G2(n))→M to S. We have the projection map
π : P (M,S)→ P (M,G) ⊂ F (M,G1(n)) = first order frame bundle of M.

QB : Can P (M,S) contain any information not contained in P (M,G)?
We can incorporate the data given in the first paragraph into the diagram

0 −→ V −→ S π|S−→ G −→ 1
↓ ↓ ↓

0 −→ K2(n) −→ G2(n) π−→ G1(n) −→ 1
(1)

where the vertical maps are inclusions.
This paper is organized as follows. In Section 2, we assume that all groups in (1) are abstract

groups and denote the lower sequence in (1) by Φ (dropping n also in the spaces in the lower
sequence in (1)). The following assumptions on Φ will be made during the course of this paper.

A1 : Φ splits, i.e. [G2] = 0 in H2(G1,K2).
A2 : K2 acts transitively on the splittings of Φ, i.e. H1(G1,K2) = 0.
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With these assumptions we give the construction of the vector space H2(G,V,Φ) whose elements
are equivalence classes of extensions contained in Φ as in (1), modulo the action of K2 (see Propo-
sitions 4, 5 and Definition 6). The main point is that the definition of H2(G,V,Φ) does not use any
concept outside Φ.

In Section 3, we recall the definition of the second order jet group G2(n) and the lower sequence in
(1) which we denote by Φ(n). We show that Φ(n) satisfies A1 and A2 and therefore H2(G,V,Φ(n))
is defined.

In Section 4, we define the Lie algebra analogue H2(LG,V,LΦ(n)) and define the homomorphism
H2(G,V,Φ(n))→ H2(LG,V,LΦ(n)). Thus we have the commutative diagram

H2(G,V,Φ(n)) −→ H2(LG,V,LΦ(n))
↓ ↓

H2(G,V) −→ H2(LG,V)
(2)

The vertical homomorphisms in (2) are induced by inclusion. The cohomology groups H∗(g,V) are
defined and studied first in [CE48] for an arbitrary Lie algebra g and representation V. The group
H2(G,V) is defined (again for an arbitrary Lie group G and representation V) and studied in detail
in [Hoch51] (see [HM62] for H∗(G,V)). It is shown in [Hoch51] that the lower homomorphism in
(2) is an isomorphism if G is simply connected. This isomorphism is generalized to H∗(G,V) →
H∗(LG,V) in [VEst53] with the assumption that G is homologically trivial in certain dimensions.

In Section 5, we give an affirmative answer to QA by constructing explicit examples where
dim H2(LG,V,LΦ(n)) 6= 0 whereas dim H2(LG,V) = 0 (e.g. see Proposition 15). This fact shows
that we may loose information in general when we pass from the upper row to the lower row in (2)
which incorporates continuous cohomology. Our examples raise a plethora of questions in relation to
higher order geometries which we hope to study in some future work (see [CSS01] and the references
therein for an important class of such geometries, called parabolic geometries).

In Section 6, we make some remarks on the possible global consequences of the present framework
based on [GOO1] whose motivation is to give a positive answer also to QB. Finally we would like
to indicate that the present work, [GOO1] and [GOO2] should be considered as the initial steps of a
program set forth in [Ort06] which proposes a possible generalization of Klein’s Erlangen program.

2. Construction of the vector space H2(G,V,Φ)

Let G1 be an abstract group with identity 1 and K be a vector space. Let G2 be an extension of G
by K1, i.e. we have the exact sequence

Φ : 0 −→ K −→ G2
π−→ G1 −→ 1 (3)

Φ will be the same throughout this section.

Recall that (3) gives an action of G1 on K defined as follows: For g1 ∈ G1, we choose some g2 ∈ G2

with π(g2) = g1 and define g1k
.= g2k(g2)−1. Since K is abelian, g1k does not depend on g2 and we

have g1(k + k′) = g1k + g1k
′.

We now make the following assumption

A1 : There exists a homomorphism σ : G1 → G2 such that π ◦ σ = id, in other words, Φ splits.

For any g2 ∈ G2, we have g2 = kσ(g1) with k = g2(σ ◦ π(g−1
2 )) ∈ K and g1 = π(g2). Also, if

g2 = kσ(g1) = k′σ(g′1) then σ(g′1g
−1
1 ) = k′k−1 so that g′1 = g1, k = k′, thus the representation

g2 = kσ(g1) is unique. Let G1 ∝ K be the semidirect product, i.e. G1 ∝ K is G1×K as a set and the
group operation is (g1, k)(g′1, k

′) = (g1g
′
1, k + g1k

′). We have the isomorphism G2 → G1 ∝ K defined
by kσ(g1)→ (g1, k), i.e. σ gives an identification of G2 with G1 ∝ K.
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We now fix σ once and for all until further notice. We will use both notations (g1, k) and kσ(g1)
(strictly speaking, we should write (g1, k)σ for (g1, k)).

Definition 1. Let Gbe a subgroup of G1. A subspace V of K is called a kernel for G if there exists
a subgroup Sof G2 with π(S) = G and V = ker(π|S).

Thus we have the following diagram:

0 −→ V −→ S π|S−→ G −→ 1
↓ ↓ ↓

0 −→ K −→ G2
π−→ G1 −→ 1

(4)

where the vertical maps are inclusions. Note that G acts on V and this action is compatible with
the action of G1 on K.

Definition 2. A commutative diagram of the form (4) is called an extension of G by V restricted
to Φ. We will denote (4) simply by S and call S a (restricted) extension (of G by V) and denote
the set of all restricted extensions by H(G,V,Φ).

Our purpose is to endow H(G,V,Φ) with a vector space structure over R. First we observe that
the Baer sum of two restricted extensions S and S ′ can be viewed as another restricted extension:
Note that ∆S,S′

.= {(s, s′) ∈ S × S ′ | π(s) = π(s′)} is a subgroup of the product S × S ′. Using
the fact that both extensions S and S ′ realize the same action of G on V, we see that (V,−V) is
a normal subgroup of ∆S,S′ , consisting of elements of the form (v,−v), v ∈ V. As well known, we
construct the Baer sums S ⊕ S ′ .= ∆S,S′/(V,−V) and G2 ⊕ G2

.= ∆G2,G2/(K,−K). Note that the
inclusion i : S × S ′ → G2 × G2 injects S ⊕ S ′ into G2 ⊕ G2 as a subgroup. Upon identifying G2 by
G1 ∝ K via σ, we now define σ : G2 ⊕ G2 → G2 by

σ{(g2, k), (g2, k
′)} = (g2, k + k′)

where {(g2, k), (g2, k
′)} denotes the coset of ((g2, k), (g2, k

′)) in ∆G2,G2 . It can be verified without
difficulty that σ is well-defined and an isomorphism. Thus, we obtain the following diagram

0 −→ V −→ S ⊕ S ′ −→ G −→ 1
↓ ↓ i ↓

0 −→ K −→ G2 ⊕ G2 −→ G2 −→ 1
‖ ↓ σ ‖

0 −→ K −→ G2 −→ G2 −→ 1

Now we define:
S

σ
⊕ S ′ .= (σ ◦ i)(S ⊕ S ′) ∈ H(G,V,Φ). (5)

Alternatively, we can define S
σ
⊕ S ′ by giving its elements in the fiber over g ∈ G:

π |−1

S
σ
⊕S′

(g) .= {kk′σ(g) | kσ(g) ∈ π |−1
S (g), k′σ(g) ∈ π |−1

S′ (g)} (6)

where we used multiplicative notation for the operation of K. We clearly have S
σ
⊕S ′ = S ′

σ
⊕S and

(S
σ
⊕ S ′)

σ
⊕ S ′′ = S

σ
⊕ (S ′

σ
⊕ S ′′).

We now take the particular extension
σ
E .= {(g, v) | g ∈ G, v ∈ V} associated to the splitting σ of

Φ whence we have the following commutative diagram

0 −→ V −→
σ
E

σ|G←−−−−−→
π

G −→ 1

↓ ↓ ↓

0 −→ K −→ G2

σ←−−−→
π

G1 −→ 1

(7)

3
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and σ|G splits the upper row of (7), that is, both rows of (7) split in a compatible way. Note that if
s ∈ S, where S is an arbitrary extension, then s = (g, k), where g ∈ G and k ∈ K but we might not
have k ∈ V.

Let (g, k) ∈ S for some extension S, and v ∈ V. Since (1, v′) ∈ S for all v′ ∈ V, in particular
we have (1, g−1v) ∈ S which gives (g, k)(1, g−1v) = (g, k + v) ∈ S. This fact together with the

definitions of σ and
σ
⊕ gives

S
σ
⊕

σ
E = S

for all S ∈ H(G,V,Φ).

Now for S ∈ H(G,V,Φ) we define
σ
−S .= {(g,−k) | (g, k) ∈ S}. If (g, k), (g, k′) ∈ S, then

(g, k)(g, k′)−1 = (g, k)(g−1,−g−1k′) = (1, k − k′) ∈ S and hence k − k′ ∈ V. Therefore

S
σ
⊕ (

σ
−S) =

σ
E .

We now define
t

σ· S .= {(g, tk) | (g, k) ∈ S} ∈ H(G,V,Φ). (8)

for t ∈ R. Clearly, we have t
σ· (S

σ
⊕S ′) = (t

σ· S)
σ
⊕(t

σ· S ′). The remaining axioms being easily verified,
we see that H(G,V,Φ) is a vector space over R with the operations defined by (5) and (8). We
denote this vector space by Hσ(G,V,Φ).

We will now define an equivalence relation onHσ(G,V,Φ). Let Ik denote the inner automorphism
of G2, for k ∈ K, i.e. Ik(g2) = k(g2)k−1. Note that Ik acts as identity on V and commutes with the
projection π.

Definition 3. Let S, S ′ ∈ Hσ(G,V,Φ). Then S ∼ S ′ if Ik(S) = S ′ for some k ∈ K. In this case we
have the following commutative diagram:

0 −→ V −→ S π−→ G −→ 1
‖ ↓ Ik ‖

0 −→ V −→ S ′ π−→ G −→ 1

We define H2
σ(G,V,Φ) .= Hσ(G,V,Φ)/ ∼ and denote the equivalence class of S by [S].

Proposition 4. The operations

[S]
σ
⊕ [S ′] .= [S

σ
⊕ S ′]

t
σ· [S] .= [t

σ· S]

are well-defined and H2
σ(G,V,Φ) is a vector space with 0 = [

σ
E ].

Proof. Suppose that Ik(S) = L and Ik′(S ′) = L′. We define λk,k′ : ∆S,S′ → ∆L,L′ by λk,k′(x, y) =
(Ik(x), Ik′(y)). Since (1, k)(1, v)(1, k)−1 = (1, v) and similarly for k′, the map λk,k′ is identity on
(V,−V) and therefore induces a map λk,k′ : S ⊕ S ′ → L ⊕ L′ defined by λk,k′{(g,m), (g,m′)} =
{Ik(g,m), Ik′(g,m′)}. Now

(i ◦ σ ◦ λk,k′){(g,m), (g,m′)} = i ◦ σ{Ik(g,m), Ik′(g,m′)}
= i ◦ σ{(g, k + m− gk), (g, k′ + m′ − gk′)}
= (g, k + k′ + m + m′ − g(k + k′))
= (1, k + k′)(g,m + m′)(1, k + k′)−1

= (Ik+k′ ◦ i ◦ σ){(g,m), (g,m′)}

which proves [S
σ
⊕ S ′] = [L

σ
⊕ L′]. Also, if Ik(S) = L then Ik(t

σ· S) = t
σ· L which is easy to check.

The other axioms are easily verified.
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Note also that K acts on the splittings of Φ : If σ is a splitting, so is Ik ◦ σ, k ∈ K.

Proposition 5. Let σ, ξ be two splittings of the sequence Φ with σ = Ik◦ξ. Then id : H2
σ(G,V,Φ)→

H2
ξ (G,V,Φ) is a linear isomorphism.

Proof. We will use (6). Let s ∈ S, s′ ∈ S ′ and π(s) = π(s′) = g. Thus s = xσ(g) = yξ(g) and
s′ = x′σ(g) = y′ξ(g), for some x, x′, y, y′ ∈ K. Suppose σ = Ik ◦ ξ. Then

kxx′σ(g)k−1 = kxy′ξ(g)k−1 = xy′kξ(g)k−1

= xy′(Ik ◦ ξ)(g) = y′xσ(g) = yy′ξ(g).

Therefore

Ik(S
σ
⊕ S ′) = S

ξ
⊕ S ′

⇔ [S
σ
⊕ S ′] = [S

ξ
⊕ S ′]

⇔ [S]
σ
⊕ [S ′] = [S]

ξ
⊕ [S ′].

Thus, identity map is a group isomorphism. Since k(tx)ξ(g)k−1 = (tx)kξ(g)k−1 = (tx)σ(g), we have

[t
σ· S] = [t

ξ
· S], so it is also linear.

We now make our second assumption.
A2. For any two splittings ξ, σ of Φ, Ik ◦ ξ = σ for some k ∈ K, i.e. H1(G1,K) = 0.

Definition 6. H2(G,V,Φ) .= H2
σ(G,V,Φ) for some splitting σ of Φ.

Note that H2(G1,K,Φ) = 0 by definition. We will single out the following simple fact as a
proposition which will be crucial later.

Proposition 7. Let S be an extension as in (4). Then the following are equivalent.

(i) [S] = 0 in H2(G,V,Φ).
(ii) There exists some splitting σ such that σ|S splits the upper sequence of (4).

(iii) There exists some splitting σ such that σ(G) ⊂ S.

Proof. (i) ⇒ (ii): We choose some ξ. Since [S] = [
ξ

E ] in H2
ξ (G,V,Φ), we have Ik(

ξ

E) = S for some

k ∈ K. It follows that for σ = kξk−1,
σ
E = k(

ξ

E)k−1 = S.
(ii)⇒ (iii): Obvious.
(iii)⇒ (i): Let s ∈ S with π(s) = g. Then s = kσ(g), k ∈ K. Since σ(g) ∈ S, k is in S ∩K = V.

Therefore S =
σ
E so that [S] = 0.

Let H2(G,V) denote the group of arbitrary extensions of G by V. Thus we have the obvious
homomorphism

µ : H2(G,V,Φ) −→ H2(G,V)

induced by inclusion.
The space H2(G,V) is studied for Lie groups in detail in [Hoch51]. In a similar way, the above

construction of H2(G,V,Φ) works through if we assume that the groups occurring in Φ are Lie
groups and the groups in the upper sequence in (4) are Lie subgroups. In this case, we need to
assume that all splittings are analytic. The framework in the next two sections will be a particular
instance of this more general situation. We should note here that the use of analytic factor sets is
not feasible in defining H2(G,V) in general, unless G is simply connected (see [Hoch51], pg.105).
However, this crucial point will be irrelevant in the particular situation of the next section.
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3. Construction of H2(G,V,Φ(n)) for the second order jet group

Let GL2(n,R) = G2(n) be the set of 2-jets all local diffeomorphisms of Rn with source and target
at the origin 0 ∈ Rn. G2(n) is a group with the operation induced by the composition of jets: For
j2(f)0, j2(g)0 ∈ G2(n) we define j2(f)0 ◦ j2(g)0

.= j2(f ◦ g)0. The same construction with 2-jets
replaced by 1-jets gives the group GL1(n,R) = G1(n) and a surjective homomorphism of Lie groups
with kernel K(n) which is a vector space. Thus we have the exact sequence

Φ(n) : 0 −→ K(n) i−→ G2(n) π−→ G1(n) −→ 1 (9)

In the coordinates (xi) of Rn, an element of G2(n) is expressed in the form (f i
j , f

i
jk), 1 6 i, j, k 6 n,

and the group operation is given by

(f i
j , f

i
jk)(g

i
j , g

i
jk) = (f i

ag
a
j , f i

ag
a
jk + f i

abg
a
j gb

k) (10)

which is the chain rule of differentiation. The identity is (δi
j , 0) and π is given by π(f i

j , f
i
jk) = f i

j .We
will denote (f i

j , f
i
jk) also by (f, F ) and identity by (1, 0). With this short notation, we will write the

group operation as (f, F )(g,G) = (fg, fG + Fg). For instance, (f, F )−1 = (f−1,−f−1Ff−1) using
our short notation. Let (x)→ (y) be a coordinate change with (g,G) .= ( ∂yi

∂xj (0), ∂2yi

∂xi∂xj (0)). We find

(g,G)(f, F )(g,G)−1 = (
y

f,
y

F ) where (
y

f,
y

F ) denotes the components of (f, F ) in (yi) coordinates. We
will use this superscript convention also for other objects to be defined below. Note that f in (f, F )
has an invariant meaning but F alone does not.

An important property of the extension (9) is that it splits. There is the canonical splitting
s : G1(n) → G2(n) defined by s(f) = (f, 0). Thus, the exact sequence Φ(n) satisfies the hypothesis
A1 of Section 2, and (f, F ) = ks(g) with k = (1, Ff−1) ∈ K(n). Observe the double meaning of
the symbol (f, F ) here and in Section 2. Nevertheless G2(n) with the operation above is isomorphic
to the set G2(n) equipped with the operation as in Section 2 where the isomorphism is given by
(f, F ) 7→ (f, Ff−1). From now on, we will be using the symbol (f, F ) in the sense of previous
paragraph.

With this setting, we have

(g,G)(f, 0)(g,G)−1 = (gf,Gf)(g−1,−g−1Gg−1)
= (gfg−1,−gfg−1Gg−1 + Gg−1gfg−1)

= (
y

f, Γ(
y

f)− (
y

f)Γ), Γ .= Gg−1

and therefore
y
s(

y

f) = (
y

f, Γ(
y

f)− (
y

f)Γ) (11)

= (1,Γ)(
y

f, 0)(1,Γ)−1

and not
y
s(

y

f) = (
y

f, 0). On the other hand, the assignment (
y

f) → (
y

f, 0) is clearly another splitting

of (9). To avoid confusion, we will denote this splitting by
(y)
s . Thus (11) becomes now

y
s = IΓ ◦

(y)
s

where IΓ is the inner automorphism of G2(n) defined by Γ ∈ K(n).
We will now show that Φ(n) satisfies also A2.

Proposition 8. (i) Let σ be an arbitrary (not necessarily continuous) splitting of (9). Then there

exists some coordinates (yi) such that σ =
(y)
s .

(ii) Let σ1, σ2 be two splittings of (9). Then there exists a unique Γ ∈ K(n) such that σ1 = IΓ◦σ2.
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Proof. Let σ(f) = (f,Ω(f)) for some function Ω. Since σ is a homomorphism, we have σ(fg) =
(fg, Ω(fg)) = σ(f)σ(g) = (f,Ω(f))(g,Ω(g)) = (fg,Ω(f)g + fΩ(g)) and therefore

Ω(fg) = Ω(f)g + fΩ(g) f, g ∈ G1(n).

Setting g = a1 for some real number a 6= 1, Ω(fg) = Ω(gf) holds. Using the relation above, this
yields

Ω(g)f − fΩ(g) = (a2 − a)Ω(f) (12)

since Ω(f)g = a2Ω(f) and gΩ(f) = aΩ(f) via the groups operation defined by (10). Thus, Ω(f) =
Γf − fΓ where Γ = 1

a2−a
Ω(g). Consequently we get

σ(f) = (f,Γf − fΓ)
= (1,Γ)(f, 0)(1,Γ)−1

= IΓ ◦ s f ∈ G1(n).
(13)

Γ in (13) is unique. Indeed, if Γ1f − fΓ1 = Γ2f − fΓ2 for all f , we get (Γ1 − Γ2)f = f(Γ1 − Γ2).
Setting f = b1, yields b2(Γ1 − Γ2) = b(Γ1 − Γ2) which proves Γ1 = Γ2 since b is arbitrary. Both
claims follow immediately.

Corollary 9. Let V ⊂ K(n) be a subspace, G ⊂ G1(n) be a Lie subgroup and suppose that V is
a kernel for G as in Definition 1. Then Φ(n)satisfies A1 and A2 and consequently the vector space
H2(G,V,Φ(n)) is defined.

Let Γi
jk denote the components of a first order symmetric connection Γ. Consider the system of

geodesics
..
x

i + Γi
ab

.
x

a .
x

b = 0 (14)

where we assume that the values of the quantities in (14) are assigned only at 0 ∈ Rn. Let Γ̃ ⊂ G2(n)
be the subgroup which stabilizes (14). If (f, F ) ∈ Γ̃, an easy computation shows that F = −(Γf −
fΓ), f ∈ G1(n). Comparing with (13), we see that there is a 1-1 correspondence between first order
symmetric connections at 0 ∈ Rn and splittings of (9), which justifies our notation Γ. Our examples
in Section 5 will show the impossibility of studying certain second order geometric structures using
only Γ even if we prolong Γ to a second order connection.

Based on our computations in search for a nontrivial H2(G,V,Φ(n)), we are led to the following
conjecture:

C1 : Let T denote the tensor space of Rn and consider the linear representation of G2(n) on
J1(T ). Suppose that S is the stabilizer of some φ1, φ2, ..., φk ∈ J1(T ). Then H2(π(S),V,Φ(n)) = 0.

However, linear representations of G2(n) are much richer than those in C1 according to [Ter78].
We believe that C1 holds also for k different actions (not necessarily linear) of G2(n) if these actions
are prolonged actions of G1(n). For instance, in Example 3 of Section 5, S will be the stabilizer of
some Λ ∈ G2(n) where G2(n) acts on itself by inner automorphisms, i.e. S will be the centralizer of
some Λ ∈ G2(n). However, an arbitrary Λ will not serve our purpose.

4. The homomorphism H2(G,V,Φ(n))→ H2(LG,V,LΦ(n))

Consider the Lie algebra exact sequence

LΦ(n) : 0 −→ K(n) i−→ LG2(n) π−→ LG1(n) −→ 1 (15)

where (1,Γ) ∈ K(n) is identified with (0,Γ) ∈ LK(n). We will denote (0,Γ) simply by Γ.
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An element of LG2(n) is of the form (gi
j , G

i
jk) and the bracket is

[(gi
j , G

i
jk), (h

i
j ,H

i
jk)] = (gi

ah
a
j − hi

ag
a
j , gi

aH
a
jk + Gi

akh
a
j + Gi

ajh
a
k (16)

−hi
aG

a
jk −H i

akg
a
j −H i

ajg
a
k)

Recall that the action of f ∈ G1(n) on K(n) is given by Γi
jk → f i

aΓ
a
bc(f

−1)b
j(f

−1)c
k. Differentiating

at the identity, we obtain a map LG1(n)→ End(K(n)) which maps g ∈ LG1(n) to g defined by

g(Γi
jk) = gi

aΓ
a
jk − Γi

akg
a
j − Γi

ajg
a
k .

It follows that

[g, h]LG1(n) = g ◦ h− h ◦ g = [g, h]gl(K), g, h ∈ LG1(n)

and thus we have a representation LG1(n)→ gl(K(n)). Now (16) becomes

[(g,G), (h, H)]LG2(n) = ([g, h]LG1(n), g(H)− h(G)) (17)

We will now define the Lie algebra analogue H2(g,V,LΦ(n)) of H2(G,V,Φ(n)). In view of
Sections 2, 3, this construction is now quite straightforward and we will omit the details.
LΦ(n) splits and K(n) acts transitively (by adjoint action) on all splittings of (15). We define

kernels and restricted Lie algebra extensions as before. Such extensions are closed with respect to
Baer sum. Passing over to the equivalence classes modulo the adjoint action of K(n), we arrive at
the vector space H2(g,V,LΦ(n)). We obtain the well defined mapping of sets H2(G,V,Φ(n)) →
H2(LG,V,LΦ(n)) which is a homomorphism by construction. Thus we obtain the diagram

H2(G,V,Φ(n)) −→ H2(LG,V,LΦ(n))
↓ ↓

H2(G,V) −→ H2(LG,V)
(18)

where the vertical homomorphisms are induced by inclusions. The cohomology groups H∗(g,V) are
defined in [CE48] for an arbitrary Lie algebra g and representation V. See [HM62] for H∗(G,V)
(again in the general case). It is proved in [Hoch51] that the lower map in (18) is an isomorphism if
G is simply connected. This isomorphism is generalized to H∗(G,V)→ H∗(LG,V) in [VEst53] with
the assumption that G is homologically trivial in certain dimensions.

Q1 : Show that the upper homomorphism in (18) is surjective and prove a Van Est type theorem
for this homomorphism.

Our examples in the next section will indicate that, if such a theorem exists, it may not be
possible to formulate its hypothesis using the topology of G only, as one may need deeper properties
of G.

Q2 : Are the vertical homomorphisms in (18) surjective?
Now suppose [S] = 0 in H2(G,V,Φ(n)). In view of Proposition 7 and Diagram (7), there exists

a splitting σ of Φ(n) which splits also the upper sequence in (1). Equation (13) shows that σ is of
the form σ(f) = (f,Γf − fΓ) = (f, F ) or

F i
jk = Γi

abf
a
j f b

k − f i
aΓ

a
jk , f ∈ G1(n) (19)

for some constants Γi
jk. Similarly [LS] = 0 in H2(LG,V,LΦ(n)) iff there exists a splitting σ of

LΦ(n) whose restriction to LG splits LS. In this case, σ(g) = (g,G(g)) where G(g) is defined by

G(g)i
jk = Γi

akg
a
j + Γi

ajg
a
k − gi

aΓ
a
jk, g ∈ LG1(n) (20)

or shortly σ(g) = (g,−g(Γ)) for some Γ ∈ K(n). This is obtained by differentiating (19) at the
identity (1, 0) and follows also from (16) by setting (hi

j ,H
i
jk) = (0,Γi

jk).
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5. Nontriviality of H2(G,V,Φ(n))

In this section we will present three nontrivial examples.
Example 1 : This extreme example will show that H2(G,V,Φ(n)) can be nontrivial even if

V = 0. We choose λ ∈ LG1(n) satisfying i) λ 6= 0; ii) R(λ)  K(n) where R(λ) is the range of
λ. Note that no λ satisfies (i) and (ii) for n = 1, so we assume n > 2. We choose θ /∈ R(λ) and
define g

.= span{λ} ⊂ LG1(n) and s
.= span{(λ, θ)} ⊂ LG2(n). We define π : s → g by π(λ, θ) = λ

obtaining the restricted extension of abelian Lie algebras

0 −→ V −→ s
π−→ g −→ 0 (21)

where V = 0 ! Suppose [s] = 0 in H2(g,V,LΦ(n)). Then there exists some K0 ∈ K such that
(λ, λ(K0)) = (λ, θ) and therefore θ ∈ R(λ), contradicting our choice. It is easy to see that span{λ, θ1}
and span{λ, θ2} determine the same class in H2(g,V,LΦ(n)) iff θ1 − θ2 ∈ R(λ) and therefore
dim H2(g,V,LΦ(n)) = dimK − dim R(λ). In particular, we see that the 1-parameter subgroup
et(λ,θ) does not split over etλ.

Example 2 : We will give an example where H2(g,V,LΦ(n)) is nonzero. This would imply the
nontriviality of H2(G,V,Φ(n)) if the upper homomorphism in (18) is surjective as claimed in Q1.
Supposing n > 2, we choose λ ∈ LG1(n) satisfying λ 6= 0 but λ

2 = 0. We also choose θ ∈ K(n) which
is not in N(λ), the nullspace of λ. Let us define C(λ, θ) .= {(x,X) ∈ LG2(n) | [(x,X), (λ, θ)] = 0}.
By (17), we have

[x, λ]LG1(n) = 0

x(θ)− λ(X) = 0 (22)

Consider g
.= π(C(λ, θ)) in C(λ) .= {y ∈ LG1(n) | [y, λ]LG1(n) = 0}. Since λ ∈ g, we have 1 6 dim g 6

dim C(λ). By (22), the nullspace N(π) of π : C(λ, θ) → g is (0, N(λ)) ∼= N(λ). Thus we obtain the
restricted Lie algebra extension

0 −→ N(λ) −→ C(λ, θ) −→ g −→ 0 (23)

Now suppose [C(λ, θ)] = 0 in H2(g, N(λ),LΦ(n)). Then there would exist some K0 ∈ K(n) such
that (x, x(K0)) ⊂ C(λ, θ) for all x ∈ g. Now (22) gives x(θ) − (λ ◦ x)(K0) = 0. Setting x = λ, we
obtain λ(θ) = 0 since λ

2 = 0, which contradicts our choice θ /∈ N(λ).
Example 3 : In this example we will directly construct the group S for n = 2. We do not know

whether this example is a special case of Example 2. Let Λ = (λ, θ) ∈ G2(n) and consider the
subgroup S ⊂ G2(n) consisting of elements in G2(n) which centralize (commute with) Λ, i.e. (f, F )
is in S iff (λ, θ)(f, F ) = (f, F )(λ, θ), that is, (λf, λF + θf) = (fλ, fθ + Fλ), or equivalently

λf = fλ (24)
θf − fθ = Fλ− λF (25)

In coordinates, equations (24) and (25) become

λi
af

a
j = f i

aλ
a
j (26)

θi
abf

a
j f b

k − f i
aθ

a
jk = F i

abλ
a
jλ

b
k − λi

aF
a
jk (27)

Equations (26) and (27) are the defining equations of S. With an abuse of notation, we will write
S = (f, F ).

We choose

λ =
[

1 c
0 1

]
, c 6= 0. (28)

9
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We fix λ once and for all. We also choose

θ1
11 6= −θ2

12 or θ2
11 6= 0. (29)

Now (24) defines the group

P = {
[

x y
0 x

]
| x, y ∈ R, x 6= 0} ⊂ G1. (30)

Let G = π(S). Thus, G ⊂ P. Substituting (30) into (25), we define the function Ξ(f, F, λ, θ) .=
θf−fθ−Fλ+λF which depends on 7 parameters (λ, θ) and 8 variables (f, F ) and thus Ξ : R8 → R6.
Now Ξ vanishes for (f, F ) = (1, 0) and (29) implies that Ξ has constant rank 5 near (1, 0). Thus
(26) and (27) define a smooth manifold of dimension 3 near (1, 0) for any choice of parameters
satisfying (29). The details of the verification will be evident below.

To find the equations for LS, we differentiate (26) and (27) at the identity (1, 0), which gives

λi
ag

a
j = gi

aλ
a
j (31)

θi
akg

a
j + θi

jag
a
k − gi

aθ
a
jk = Gi

abλ
a
jλ

b
k − λi

aG
a
jk (32)

where LS = (g,G). Now (31) defines

LP = {
[

x y
0 x

]
| x, y ∈ R} ⊂ LG1. (33)

We have 6 equations in (32) for the choices (i, j, k) = (1, 1, 1), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 2, 1),
(2, 2, 2). Substituting g1

1 = g2
2 = x, g1

2 = y, g2
1 = 0 into the LHS of (32) and λ1

1 = λ2
2 = 1, λ1

2 = c,
λ2

1 = 0 into the RHS of (32), adding the first equation to fifth equation and simplifying, we find

−θ1
11x + θ2

11y = cG2
11 (34)

−θ1
12x + (θ2

12 − θ1
11)y = c(G2

12 −G1
11) (35)

−θ1
22x + (θ2

22 − 2θ1
12)y = cG2

22 − c2G1
11 − 2cG1

12 (36)
−θ2

11x = 0 (37)
(−θ1

11 − θ2
12)x = 0 (38)

−θ2
22x− 2θ2

12y = −c2G2
11 − 2cG2

12 (39)

We observe that the linear forms on the RHS of (34), (35), (36), (39) are linearly independent.
Setting x = y = 0 in (34)-(39), we get the equations which define V. Thus dimV = 2 as G1

22 and
G1

12 are free variables. Note that V depends only on λ.

Let g = LG = Lπ(S) = π(LS) ⊂ LP. Now assume g = LP. This means that (34)-(39) have
solutions for the 6 unknowns G2

11, . . . , G
2
12 for all x, y ∈ R, which is impossible in view of (29) and

(37), (38). Thus we must have x = 0 and g is contained in the Lie subalgebra of LP obtained by
setting x = 0 in (33). Now setting x = 0 on the LHS of (34)-(39) and letting y be arbitrary, (34)-(39)
have solutions for all y and therefore g also contains this subalgebra of LP. Thus, we conclude

g = {
[

0 y
0 0

]
| y ∈ R}. (40)

Now for any choice of parameters λi
j satisfying (29), we constructed a restricted Lie algebra extension

as in (21) with s = LS, dimV = 2 and dim g = 1. However, note the possibility that we may have
other restricted extensions which project onto g with kernel V but are not equivalent to those defined
in this way.

Definition 10. Let S be a restricted extension as in (4). S is called a centralizer if it centralizes
some Λ ∈ G2(n) as above. In this case, the restricted Lie algebra extension LS is also called a
centralizer.
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Definition 11. A centralizer LS is said to be

of type I if θ1
11 = −θ2

12 and θ2
11 = 0,

of type II if θ1
11 = −θ2

12 and θ2
11 6= 0,

of type III if θ1
11 6= −θ2

12 and θ2
11 = 0.

We should be careful with the definition of type I: as we have seen above, the defining conditions
for centralizers of type II and III impose the same condition on (30) and force the projection to be
g in (40), whereas a centralizer of type I imposes no conditions on (30). Therefore, by a centralizer
LS of type I we mean the solutions (34)-(39) once we set x = 0 on LHS of these equations. In the
invariant language, we construct first the split extension E with projection (30) and define LS by
the elements in E which project onto g.

For λ fixed as in (28) (so for the corresponding fixed V) we make

Definition 12. H2
C(g,V,LΦ(n)) .= {x ∈ H2(g,V,LΦ(n)) | x = [LS] for some centralizer LS}.

Lemma 13. (i) H2
C(g,V,LΦ(n)) is a subspace of H2(g,V,LΦ(n).

(ii) Let α ∈ H2
C(g,V,LΦ(n)). Then α = 0 if and only if all representatives of α are of type I.

(iii) Let α, β ∈ H2
C(g,V,LΦ(n)) both have representatives of type II (or III). Then α, β are

linearly dependent.

(iv) α, β have representatives of types II and III, respectively if and only if {α, β} is a basis of
H2

C(g,V,LΦ(n)).

Proof. (i) Let LS1 = (g,G1) and LS2 = (g,G2) centralize Λ1 = (λ, θ), Λ2 = (λ, ϑ) respectively and
let a, b ∈ R. Now a[LS1] + b[LS2] = [(g, aG1 + bG2)] which centralizes (λ, aθ + bϑ).

(ii) Suppose that (34)-(39) are the defining equations of a representative for α. We substitute
g1
1 = g2

2 = g2
1 = 0, g1

2 = y, into RHS of (20) and then substitute (20) into RHS of (34)-(39). Now
(34), (35), (36), (39) give

θ2
11y = 0

(θ2
12 − θ1

11)y = 2cΓ2
11y

(θ2
22 − 2θ1

12)y = (4cΓ2
12 + c2Γ2

11 − 2cΓ1
11)y

2θ2
12y = 2cΓ2

11y

(41)

The class α = 0 if and only if the system (41) has a solution for Γ2
11,Γ

2
12,Γ

1
11, Γ2

11 for all y which
implies θ2

11 = 0 and θ1
11 = −θ2

12.
(iii) Let α = [LS1], β = [LS2] where LS1, LS2 centralize Λ1 = (λ, θ), Λ2 = (λ, ϑ) respectively.

Suppose that LS1, LS2 are of type II so that θ1
11 = −θ2

12, θ2
11 6= 0 and ϑ1

11 = −ϑ2
12, ϑ2

11 6= 0. Choose
a, b ∈ R both nonzero satisfying aθ2

11 + bϑ2
11 = 0 so that aα+ bβ = 0. Similar argument holds if they

are both of type III.
(iv) Follows now easily.

Lemma 14. Let s be any restricted Lie algebra extension of g by V. Then

(i) s is a centralizer, i.e. s represents a class in H2
C(g,V,LΦ(n)).

(ii) s is abelian.

Proof. (i) Since dim s = 3, s has a basis of the form {(0,Γ), (0,Γ′), (y,H)} where {Γ,Γ′} is a basis

for V and y =
[

0 y
0 0

]
∈ g. By definition, (0,Γ) (or (0,Γ′)), when inserted in place of (g,G),

satisfies the system (32) for any θ. Now if (g,G) is replaced by (y,H) in (32), there is always a
solution for θ. This proves that s is always contained in a centralizer.

11
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Moreover, if θ2
11 6= 0 or θ1

11 + θ2
12 6= 0, then centralizer of (λ, θ) has dimension 3 therefore it is

equal to s. If both θ2
11 = 0 and θ1

11 + θ2
12 = 0 then s is of type I.

(ii) For the basis above, (0,Γ) commutes with (0,Γ′) while

[(0,Γ), (Y, G)] = (0; 0, 0,−y2Γ1
11, 0, 0,−y2Γ2

11).

Here the entries after the semicolon correspond to (i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1),
(2, 1, 2), (2, 2, 2), respectively. Since Γ ∈ V, it follows from the discussion following equation (39)
that Γ1

11 and Γ2
11 are both 0.

Proposition 15. For V and g as above, we have

(i) dim H2(g,V,LΦ(n)) = 2,

(ii) dim H2(g,V) = 0.

Proof. The first statement follows from Lemma 13(iv) and Lemma 14(i). The second statement
is equivalent to saying that any extension s of g by V splits. This follows from the fact that dim
g = 1. In fact, take some y ∈ s − V. Since x = π(y) is nonzero, x spans g. Define a splitting σ by
σ(x) = y.

Note that (21) is simply an exact sequence of vector spaces in view of Lemma 14(ii) and is quite
uninteresting if we detach it from LΦ(n).

We would like to indicate the following interesting point: Let λ be a (1, 1)-tensor defined near
the origin of Rn. Let S ⊂ G2(n) be the subgroup which stabilizes (j1λ)0 = (λi

j , ϑ
i
jk). The defining

equations of S are

λi
af

a
j = f i

aλ
a
j

ϑi
abf

a
j f b

k − f i
aϑ

a
jk = F i

akλ
a
j − λi

aF
a
jk

which is the same as (26) and (27) except one term. This fact suggests, but does not prove, that S
in our example may not arise from a representation in the way as in conjecture C1.

It is easy to generalize the above example to n = 3. The computation is more involved but can
be done by hand. It is possible to arrange the parameters so that the projection g is a subalgebra of
the strictly upper (lower) triangular matrices and g can be determined in various ways depending
on the conditions we impose on the parameters. We also carried out the calculations for n = 4, 5 on
computer. However, with increasing n it becomes soon evident that it is not possible to understand
the underlying structure, that is, the meaning of the conditions which cause nontriviality, by such
computations even though one is easily convinced that nontriviality will persist for all n. We will
postpone a conceptual study to some future work. To motivate our remarks in next section, we will
content ourselves here with the following conjecture:

C2 : Let U+(n) ⊂ SL(n,R) be the unipotent subgroup consisting of upper triangular matrices
with 1′s on the diagonal. Then there exists a kernel V for U+(n) such that H2(U+(n),V,Φ(n)) is
nontrivial.

More generally we can ask the following question.
Q3 : For which subgroups G ⊂ G1(n) can we have H2(G,V,Φ(n)) 6= 0 where V is some kernel

for G?
Q3 is quite relevant from global point of view: Suppose [S] 6= 0 in H2(G,V,Φ(n)) and π(S) = G.

Once we have some first order G-structure on a differentiable manifold M , there is no further
topological obstruction to the existence of some second order S-structure since the fibers of the
bundle G2(n)/S → G1(n)/G are homeomorphic to K/V and are thus contractible. So the information
[S] 6= 0 cannot be detected topologically. It is therefore relevant to know for which G-structures this
phenomenon can happen.
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6. Some remarks

Let G be a Lie group, H a Lie subgroup and consider the action of G on the homogeneous space
M = G/H. Now H acts on the tangent space ToM at o = coset of H with kernel H1 ⊂ H. If
H1 = {e}, then f ∈ G is uniquely determined as a transformation of M by its 1-jet. This is the
case, for instance, if G is compact. If H1 is nontrivial, the second order term in the Taylor expansion
of f contains information in order to determine f . Iterating this process (see [Sha97], pg. 160-162)
we obtain a descending chain of normal subgroups H = H0 ⊃ H1 ⊃ H2 ⊃ . . . which stabilizes at
{e} if G acts effectively on M. The smallest k where Hk = {e} is the order of the effective Klein
pair (G, H). In this case, a transformation f ∈ G of M is uniquely determined by its k-jet. For
simplicity, we will assume k = 2 so that we have the restricted extension

0 −→ H1 −→ H −→ H/H1 −→ 1 (42)

We will refer to [Kob72], pg. 142, for an explicit description of the spaces in (42) in the case of
projective and conformal structures which are special parabolic geometries [CSS01].

Now for f ∈ G with f(x) = y, let j2(f)x
y denote the 2-jet of f . Define Sx

y
.= {j2(f)x

y | f ∈ G,
f(x) = y} and S .= ∪x,y∈MSx

y . Now S is a second order transitive Lie equation on M in finite form
(see [GS] and the references therein) which is a very special groupoid. We have the projection S
→ G with the obvious definition for G. For any x ∈M, we have the restricted extension

0 −→ Vx
x −→ Sx

x → Gx
x −→ 1 (43)

and (43) coincides with (42) if x = o. Note that G acts on the vector bundle V → M where
V .= ∪x∈XVx

x and we have the extension

0 −→ V −→ S −→ G −→ 1

of Lie equations.
Generalizing the action of G on M, let S be an arbitrary second order transitive Lie equation in

finite form on a differentiable manifold M with infinitesimal Lie equation LS [GS]. We may think S
as a second order approximation to some ideal group G which acts transitively on M but may be far
from being a Lie group. In this setting, we defined in [GOO1] the global analogues H2(G,V,M(Θ))
and H2(LG,V,M(LΘ)) of H2(G,V,Φ) and H2(LG,V,LΦ) respectively where M(Θ) (M(LΘ)) de-
notes the universal second order transitive Lie equation in finite (infinitesimal) form on M . It turns
out that H2(G,V,M(Θ)) is isomorphic to H2(Gx

x ,Vx
x ,Φ(n)x) for all x ∈M . However, the definition of

H2(LG,V,M(LΘ)) incorporates ”displacement along M” through the bracket of jets of vector fields
defined in terms of the Spencer operator and thus H2(LG,V,M(LΘ)) contains, we believe, global
information. For instance, H2(LG,V,M(LΘ)) = 0 if M = Rn even if H2(LGp

p,V
p
p ,LΦ(n)p) 6= 0 as

in our examples.
In this way we obtain the global analogue

H2(G,V,M(Θ)) −→ H2(LG,V,M(LΘ))
↓ ↓

H2
d(G,V) −→ H2(LG,V)

(44)

of (18). The cohomology groups H∗(A, V ) are studied in detail in [Mac87] for an arbitrary algebroid
A and representation V → M (see the references in [Mac87] for original sources). The reader
will find the definition of H∗

d(G,V) (for general groupoids and representations) in [Cra03] and the
references therein. In view of Proposition 15, we may hope that the upper row of (44) has a richer
structure than the lower row. We believe that second order connections will play a fundamental role
in understanding the structure of the upper row of (44). An attempt in this direction is made in
[GOO1] based on the construction of [Tel72] which in particular recaptures Chern-Weil characteristic
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classes if applied to the Atiyah sequence of a principle bundle (see the Appendix A of [Mac87] for a
detailed account on the Atiyah sequence) and also produces characteristic classes also for Gelfand-
Fuks cohomology.

As a part of our program (see [Ort06]), we define and show the nontriviality of H i(G,V,Φ(n)),
i = 0, 1 in [GOO2], in which some progress is being made about the following question.

Q4 : Define a cochain complex whose ith cohomology group coincides with H i(G,V,Φ(n)), i =
0, 1, 2. Using this complex, define H∗(G,V,Φ(n)) and show the functorial properties of these groups.
More generally, consider the exact sequence of jet groups

Φr,s(n) : 0 −→ Kr,s(n) i−→ Gr(n) π−→ Gs(n) −→ 1

where r > s + 1 and the kernel Kr,s(n) is nilpotent. For restricted extensions contained in Φr,s(n),
define the cohomology groups H∗(G,V,Φr,s(n)) and derive their functorial properties.

Naturally, the next task could be formulated as follows:
Q5 : Answer Q4 in the global situation.
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14



Group extensions in second order jet group
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