Boğaziçi University	1	2	3	4	5	\sum
Department of Mathematics						
Math 231 Advanced Calculus I						
$Fall \ 2024 - \mathbf{Final} \ \mathbf{Exam} \cdot$	20 pts	20 pts	20 pts	20 pts	21 pts	100 pts
Date: January 4, 2025	Full Nan	ne:		()	Λ	
Time: 13:00-15:45			IUL		<u>] U </u>	(N)

• For $f : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{b} \in \mathbb{R}^n$, the degree-k Taylor polynomial of f at \mathbf{b} is $P_{\mathbf{b},k}^f(\mathbf{h})$. The Lagrange remainder $R_{\mathbf{b},k}^f(\mathbf{h}) = f(\mathbf{b} + \mathbf{h}) - P_{\mathbf{b},k}(\mathbf{h})$ is given by $\sum_{|\alpha|=k+1} \partial^{\alpha} f(\mathbf{b} + c\mathbf{h}) \frac{\mathbf{h}^{\alpha}}{\alpha!}$, for some $c \in (0, 1)$. Recall $|R_{\mathbf{b},k}^f(\mathbf{h})| \leq M ||\mathbf{h}||^{k+1}/(k+1)!$ where M is an upper bound for all partials of f of order k+1. • A C^2 function $g : \mathbb{R}^n \to \mathbb{R}$ is called *harmonic* if for every $\mathbf{x} \in \mathbb{R}^n$ its Laplacian is zero, that is, $\Delta g(\mathbf{x}) = (\partial_{11}g + \partial_{22}g + \ldots + \partial_{nn}g)(\mathbf{x}) = 0$.

- I wish you keep on having fun with maths in 2025.
- 1. Suppose for a C^2 function $f : \mathbb{R}^3 \to \mathbb{R}$, $f(\mathbf{x}) \to \infty$ as $|\mathbf{x}| \to \infty$. Prove that there is a point $\mathbf{b} \in \mathbb{R}^3$ such that $\partial_{11}f(\mathbf{b}) + \partial_{22}f(\mathbf{b}) + \partial_{33}f(\mathbf{b}) \ge 0$.

By thm, there is an absolute min $\alpha \in \mathbb{R}^3$ of f. Since α is a beal min, $\nabla f(\alpha) = 0$ and $\Im f(\alpha) \ge 0$.

2. Consider the function f(x, y, z, w) = (z³ + xw - y, w³ + yz - x) and its zero level set S₀ = {f = 0} ∈ ℝ⁴.
(a) Determine the set of all points (a, b, c, d) ∈ S₀ near which, on S₀, (y, w) can be written as a function of (x, z). Write down all relations which a, b, c, d must satisfy f 2
(b) Suppose on S₀, (y, w) = φ(x, z) around the point (1, 1, 0, 1) ∈ S₀. Compute ∂_zφ(1, 0).

(a) An application of ImpFT... Note f is C¹ (polynomial).
Consider
$$\begin{pmatrix} 3y_{1}f_{1} & 3w_{1}f_{1} \end{pmatrix} = \begin{pmatrix} -1 & x \\ 2 & 3w^{2} \end{pmatrix}$$
. Its def at (G,b,c,d) is $-3d^{2}$ -ac.
By ImpFT, $\begin{pmatrix} y_{1}w \end{pmatrix}$ is a fnc of $(n_{1}z)$ on S₀ whenever
def $\neq 0$ on S₀: $3d^{2} + ac \neq 0$ & $c^{3} + ad = b$, $d^{3} + bc = a$
(b) Let $P = (1,1,0,1)$. Suppose $(y_{1}w) = Q(n_{1}z) = (Q_{1}(n_{1}z),Q_{2}b_{2})$
around PonS₀. Where asked $\partial_{z}Q = (\partial_{z}Q_{1},\partial_{z}Q_{2}) = (\partial_{z}y_{1},\partial_{z}w)$ of P.
On S₀, $0 = \partial_{z}f_{1} = 32^{2} + n \cdot w_{2} - y_{z}$
 $0 = \partial_{z}f_{2} = 3w^{2} \cdot w_{z}^{2} + y_{z}^{2} + y = 3w_{z}^{2} + 1 = w_{z}(1,0) = -\frac{1}{3}$
 $at P$ Hence $\partial_{z}Q(P) = (-\frac{1}{3}, \frac{1}{3})$

3. (a) Find
$$P_{d_{2}}^{(n)}(x,y)$$
 for the function $f(x,y) = x\sin(x+y)$.
(b) Give an upper bound for $P_{d_{2}}^{(n)}(1,1) = \sin u$
(c) Observe $P_{d_{k}}^{(n)}(x,y) = \pi$. $P_{0,k-1}(\pi+y)$. So: $P_{0,0}^{(n)}(\pi,y) = 0 = P_{0,1}^{(n)}(\pi,y)$
 $P_{0,2}^{(n)} = \pi \cdot (\pi+y) = P_{0,3}^{(n)}$. $P_{1}^{(n)} = \pi (\pi+y) - \frac{\pi}{3!} = P_{0,5}^{(n)}$
(c) By thm, $|R_{0,5}^{(n)}(1,1)| \leq M$. $(\frac{1+M^{6}}{6!}, \quad \text{for call indux pair } \alpha = (\alpha_{1}, \alpha_{2})$
with $|\alpha| = \alpha_{1} + \alpha_{2} = 6_{3}^{(n)}$
the partial $\partial^{\alpha}f(n,y)$ is a sum of sines, cosines, π . Sines, π . Cosines,
There are at most 7 such terms in $\partial^{\alpha}f \cdot So |\partial^{\alpha}f(1,1)| \leq 7$.
Hence $|R_{1,5}^{(n)}(1,1)| \leq 7 \cdot \frac{2}{6!} = \frac{28}{45}$. Of course, much better conter-
dene. Do A in your kissure.
(a) Find the degree-3 Tevice polynomial of $\ln(1 + w)$ at 0.
(b) Find the degree-3 Tevice polynomial of $\ln(1 + w)$ at 0.
(c) Using (a) and (1), evaluate the limit. $\frac{\tan^{2} \frac{1}{2}}{1 + \frac{\pi}{2}!} = \frac{1}{2} + \frac{1}{3} - \cdots + (1)^{4} \frac{4\pi}{44!} + \frac{\pi}{4!} + \frac{\pi}{$