Boğaziçi University Department of Mathematics Math 231 Advanced Calculus I Fall 2024 – First Midterm Exam·

1	2	3	4	\sum
05	05 4 4	05 4 4	05	100
25 pts	25 pts	25 pts	25 pts	$\mid 100 \text{ pts}$

Date:	October 22, 2024	Full Name: 👂	D	Δ	D	1			24			TI		0
Time:	17:00-18:30		$\left \right\rangle$	U		U)	Ĩ	/	ו)[U		V	2

- 1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCOR-RECT ANSWER CANCELS A CORRECT ONE.
- 1. A line in \mathbb{R}^2 is closed in \mathbb{R}^2 .
- 2. T Any finite set in \mathbb{R}^m is compact. Because a finite set is bounded & is a finite which of (closed) Singletons.
- 3. Every Cauchy sequence is bounded.
- 4. If a bounded sequence (a_n) in \mathbb{R}^m has a convergent subsequence then (a_n) is convergent too. Conference $(-1)^n$

A sequence $(c_n)_{n=1}^{\infty}$ is said to be **Cauchy** if the following condition is satisfied (write in the box below):

VE70, there is some N s.t. VK, L≥N, |CK-CL |<E.

- 2. (a) Show: If A, B are bounded sets of \mathbb{R} then $A \times B$ is bounded in \mathbb{R}^2 .
 - A lies in a large interval I_A ; B lies in I_B . Then $A \times B \subset I_A \times I_B$. (b) Consider the compact interval $I = [0, 1] \in \mathbb{R}$ and a function $f : I \to \mathbb{R}$. The graph $\Gamma_f \subset \mathbb{R}^2$ of f is defined as

$$\Gamma_f = \{(x, y) \in \mathbb{R}^2 \,|\, y = f(x)\} \subset \mathbb{R}^2.$$

Show: If f is continuous on I then Γ_f is compact.

SUN 1 Sof F: I
$$\rightarrow$$
 R², F(x) = (x, f(x)). Observe $\Gamma = \Gamma(I)$.
F is continuous because its component fries are cont. **a**
(I is compact. Sine f is cont, f(I) is compact too.
By part (c), Ix f(I) is bounded. So $\Gamma_C Ix f(I)$ is bounded too.
(I is closed because $(\Gamma_f)^c$ is open in R²:
SOLNZ Let $(p,q) \notin \Gamma_f$; i.e.
either $p \notin I$, say $p > 1$. Then $B(p-1, (p,q)) \subset (\Gamma_f)^c C_{P,q} \xrightarrow{P} P_{P,q} \xrightarrow{P}$

3. Prove that if (a_n) and (b_n) are Cauchy sequences in \mathbb{R}^m , then the sequence of distances $|a_n - b_n|$ converges.

See the definiation for being Cauchy, to fix No & No, given
$$\frac{E}{2}>0$$
.
We show the sequence $C_n = a_n - b_n$ is Cauchy. $(\frac{1}{4}) (C_n)$ is convergent
is convergent
That is, given $E>0$, $\exists N$ s.t. $k, n > N \Rightarrow |c_k - c_n| < E$:
Given $E>0$, choose $N = max(N_{a_1}N_b)$. Then
 $k,n > N \Rightarrow |c_k - c_n| = |a_k - a_n + b_k - b_n|$
 $\leq |a_k - a_n| + |b_k - b_n|$
 $\leq E/2 + E/2 = E$.

4. For an arbitrary pair of real numbers $b_0 > a_0 \ge 0$, we consider the recurrence:

$$a_{n+1} = \sqrt{a_n b_n}$$
 and $b_{n+1} = \frac{a_n + b_n}{2}$;

i.e. the next a_{n+1} is the geometric mean of the previous a_n and b_n , and the next b_{n+1} is the arithmetic mean of the previous a_n and b_n .

(a) Show: For every $n \in \mathbb{Z}^{\geq 0}$, $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$. (A hint: Start with proving $a_n \leq b_n$. For this you might want to consider $b_n^2 - a_n^2$.)

(b) Show that the sequences (a_n) and (b_n) converge, and they converge to the same limit. (You can commit this part assuming that part (a) is true.)

(a) Observe
$$b_{n+1}^{2} - a_{n+1}^{2} = \frac{1}{4}(a_{n+b_{n}})^{2} - a_{n}b_{n} = \frac{1}{4}(b_{n}-a_{n})^{2} \gtrsim 0$$

So $b_{n+1}-a_{n+1} \geq 0$, $\forall n$.
Also, $a_{n+1}^{2} = a_{n}b_{n} \geq a_{n} \cdot a_{n} \Rightarrow a_{n+1} \geq a_{n};$
and $b_{n+1} = \frac{1}{2}(a_{n}+b_{n}) \leq \frac{1}{2}(b_{n}+b_{n}) = b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(b) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \inf b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \bigoplus b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \bigoplus b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \bigoplus b_{n} \oplus b_{n} = :b_{n}$.
(c) By Mon Seq. Property, $a_{n} \rightarrow supa_{n} = :a \& b_{n} \longrightarrow \bigoplus b_{n} \oplus b_{n$