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1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCOR-
RECT ANSWER CANCELS A CORRECT ONE.

1. 'J—_| A line in R? is closed in R2.

2. Any finite set in R™ is compact.Beca\m a -fw'r\(t\e_ Se‘( %S Lq}n&ﬂ & % o -E\’\Qe Wion ofs(c‘@él
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3. l/i' Every Cauchy sequence is bounded.
4. If a bounded sequence (a,) in R™ has a convergent subsequence then (a,) is convergent too.
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A sequence (c¢,)32 is said to be Cauchy if the following condition is satisfied (write in the box below):
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2. (a) Show: If A, B are bounded sets of R then A x B is bounded in R?.

—

A liecin a la;?ﬁ inderqol Lg 9 A fies in IB-TW(\ /A\*ECIAXIB.

(b) Consider the compact interval I = [0,1] € R and a function f : I — R. The graph I'y C R? of f is
defined as
Ly ={(z,y) eR*|y = f(z)} CR”.

Show: If f is continuous on I then I'; is compact.
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3. Prove that if (a,) and (b,) are Cauchy sequences in R™, then the sequence of distances |a, —b,,| converges.
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4. For an arbitrary pair of real numbers by > a¢ > 0, we consider the recurrence:

an_l_bn.

Qpy1 = anbn and bn+1 = 9

i.e. the next a,,; is the geometric mean of the previous a, and b,, and the next b, is the arithmetic
mean of the previous a,, and b,,.

(a) Show: For every n € Z=° a,, < dpi1 < bpy1 < b,. (A hint: Start with proving a,, < b,. For this you
might want to consider b2 — a2.)

(b) Show that the sequences (a,) and (b,,) converge, and they converge to the same limit. (You can commit
this part assuming that part (a) is true.)
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