

1	2	3	4	Σ
25 pts	25 pts	25 pts	25 pts	100 pts

Date: December 26, 2025
 Time: 17:15-19:15

Full Name: PROPOSED SOLUTIONS

1. Find the absolute extreme values, if any, of the function $k(x, y) = 3x^2 - 8xy - 4y^2 + 2x + 16y$ on the set $S = \{(x, y) : xy \geq 1\}$. If absolute min or max does not exist, give the reason explicitly and in detail.

Extreme values of k occur either at critical points or on ∂S , if they occur at all.

Observe that fixing y , say $y=1$, we get

$$\lim_{\substack{x \rightarrow +\infty \\ y=1}} k(x, y) = \lim_{x \rightarrow +\infty} 3x^2 - 6x + 12 = +\infty$$

Similarly let $x=1$:

$$\lim_{\substack{y \rightarrow +\infty \\ x=1}} k(x, y) = -\infty$$

Hence k does not have absolute extrema over S .

2. (a) [10] State the following Implicit Function Theorem, by completing the text that I started below:

Consider the function $F : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}$ and a point $(\vec{a}, b) \in \mathbb{R}^n \times \mathbb{R}$. Suppose that

F is of class C^1 , $F(\vec{a}, b) = 0$ and $\partial_{n+1} F(\vec{a}, b) \neq 0$.

Then there are open sets $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}$ with $\vec{a} \in U$, $b \in V$ and a C^1 function $f: U \rightarrow V$ such that $F(\vec{x}, f(\vec{x})) = 0$.

Moreover $\partial_j f(\vec{a}) = \frac{\partial_j F(\vec{a}, b)}{\partial_{n+1} F(\vec{a}, b)} \quad (1 \leq j \leq n)$

(b) (Buck, p366) [15] Let φ be a function of one variable for which $\varphi(1) = 0$. What additional conditions on φ will allow the equation $2\varphi(xy) = \varphi(x) + \varphi(y)$ to be solved for y in a neighborhood of $(1, 1)$? (Hint: In order to use part (a), start with defining a suitable function F .)

(b) Define $F: \mathbb{R}^2 \rightarrow \mathbb{R}$, $F(x, y) = 2\varphi(xy) - \varphi(x) - \varphi(y)$.

Observe $F(1, 1) = 0$. The question is to solve $F(x, y) = 0$ for y in terms of x near the point $(1, 1)$.

• Suppose φ is C^1 . Then F is C^1 too.

We also need a derivative condition to call ImpFncThm for help.

We need $0 \neq \partial_y F(1, 1) = 2x \varphi'(xy) - \varphi'(y) \Big|_{(1, 1)} = 2\varphi'(1) - \varphi'(1) = \varphi'(1)$

• So suppose $\varphi'(1) \neq 0$.

Then the result follows from ImpFncThm.

3. (Folland, p120) Determine two of the variables x, y, z, t such that the general Implicit Function Theorem does not guarantee to solve the equations $z^3 + xt - y = 0, t^3 + yz - x = 0$ for those two variables as functions of the other two near the point $(x, y, z, t) = (0, -1, -1, -1) \in \mathbb{R}^4$.

Set $F(x, y, z, t) = (z^3 + xt - y, t^3 + yz - x)$, $F: \mathbb{R}^4 \rightarrow \mathbb{R}^2$.

Observe $F(P) = (0, 0)$, and having polynomial components, F is C^1 .

To be able to solve $F = (0, 0)$ for x_1, x_2 as functions of the other two variables, the ImpFncThm requires

$$\begin{vmatrix} \partial_{x_1} F_1 & \partial_{x_2} F_1 \\ \partial_{x_1} F_2 & \partial_{x_2} F_2 \end{vmatrix} (P) \neq 0$$

This is not satisfied for $(x_1, x_2) = (0, 0)$:

$$\text{det} = \begin{vmatrix} t & -1 \\ -1 & z \end{vmatrix} \Big|_P = zt - 1 \Big|_P = 0$$

Thus the ImpFncThm does not guarantee that the equations can be solved for x, y as functions of z, t near P .

4. Here is the Inverse Function Theorem:

Consider a function $g : \mathbb{R}^k \rightarrow \mathbb{R}^k$ of class C^1 . Let $\mathbf{u} \in \mathbb{R}^k$, $\mathbf{v} = g(\mathbf{u})$. Suppose $\det(Dg(\mathbf{u}))$ is nonzero. Then there are open sets $U \subset \mathbb{R}^k$ and $V \subset \mathbb{R}^k$ containing \mathbf{u} and \mathbf{v} respectively, and a function $h : V \rightarrow U$ of class C^1 such that h is the inverse function of $g : U \rightarrow V$. Moreover $Dh(\mathbf{v}) = (Dg(\mathbf{u}))^{-1}$.

This theorem can be proven directly using the general Implicit Function Theorem.

I am going to try to contradict with the Inverse Function Theorem. Consider the function

$$g : \mathbb{R} \rightarrow \mathbb{R}, g(x) = x + 2x^2 \sin \frac{1}{x} \text{ when } x \neq 0 \text{ and } g(0) = a.$$

- (a) [4] What is the value of a which makes g a continuous function everywhere?
- (b) [4] Show that the continuous function g in part (a) is differentiable at 0 and that $g'(0) \neq 0$.
- (c) [7] Show that the function g in part (a) is not one-to-one in any neighborhood $(-\varepsilon, +\varepsilon)$ of 0.
- (d) [10] Part (c) shows that whatever open neighborhood I of 0 you take, g cannot have an inverse over I . But by part (b), $g'(0) \neq 0$. How is this example not in contradiction with the Inverse Function Theorem? Prove your claim(s) explicitly.

(a) Observe $\lim_{x \rightarrow 0} g(x) = \lim_{x \rightarrow 0} x + 2x^2 \sin \frac{1}{x} = 0$, since $-1 \leq \sin \frac{1}{x} \leq 1$.

So setting $g(0) = 0$ make g continuous at 0.

(b) $\lim_{h \rightarrow 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \rightarrow 0} \frac{1}{h} \left(h + 2h^2 \sin \frac{1}{h} \right) = 1$. So $g'(0) = 1$.

(c) Waits for your creativity.

(d) No contradiction with the InvFncThm because g is not C^1 at 0; $g'(x) = \begin{cases} 1 & , x=0 \\ 1+4x \sin \frac{1}{x} - 2 \cos \frac{1}{x} , & x \neq 0 \end{cases}$ is not cont. at 0:

$$\lim_{x \rightarrow 0} \left(1 + 4x \sin \frac{1}{x} - 2 \cos \frac{1}{x} \right) = 1 - 2 \lim_{x \rightarrow 0} \cos \frac{1}{x} \text{ does not exist}$$