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1. Find the absolute extreme values, if any, of the function k(x,y) = 3z* — 8xy — 4y* + 2z + 16y on the set
S ={(z,y) : xy > 1}. If absolute min or max does not exist, give the reason explicitly and in detail.
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2. (a) [10] State the following Implicit Function Theorem, by completing the text that I started below:
Consider the function F': R x R — R and a point (a,b) € R” x R. Suppose that
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(b) (Buck, p366) [15] Let ¢ be a function of one variable for which ¢(1) = 0. What additional conditions
on ¢ will allow the equation 2p(zy) = ¢(x) + ¢(y) to be solved for y in a neighborhood of (1,1)? (Hint:
In order to use part (a), start with defining a suitable function F.)
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3. (Folland, p120) Determine two of the variables x,y, z,t such that the general Implicit Function Theorem
does not guarantee to solve the equations 2® + 2t —y = 0,t> + yz — x = 0 for those two variables as
functions of the other two near the point (z,y, z,t) = (0,—1,—1,—1) € R%.
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4. Here is the Inverse Function Theorem:
Consider a function g : R¥ — R¥ of class C'. Let u € R*, v = g(u). Suppose det(Dg(u)) is nonzero.
Then there are open sets U C R¥ and V' C R* containing w and v respectively, and a function h : V — U
of class C' such that h is the inverse function of g : U — V. Moreover Dh(v) = (Dg(u))™".

This theorem can be proven directly using the general Implicit Function Theorem.

[ am going to try to contradict with the Inverse Function Theorem. Consider the function

1
g:R =R, g(z) =+ 22%sin — when x # 0 and ¢(0) = a.
T
(a) [4] What is the value of @ which makes g a continuous function everywhere?
(b) [4] Show that the continuous function g in part (a) is differentiable at 0 and that ¢'(0) # 0.
(c) [7] Show that the function g in part (a) is not one-to-one in any neighborhood (—¢, +¢) of 0.
(d) [10] Part (c) shows that whatever open neighborhood I of 0 you take, g cannot have an inverse over I.

But by part (b), ¢'(0) # 0. How is this example not in contradiction with the Inverse Function Theorem?
Prove your claim(s) explicitly.
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