

1	2	3	4	\sum
				100 pts

Date: October 31, 2025
 Time: 17:00-19:00

Full Name: **PROPOSED SOLUTIONS**

1. Prove or give a counter-example:

(a) Every bounded sequence in \mathbb{R}^k is Cauchy.

FALSE: $a_n = (-1)^n$ is bounded. For $\forall i$ odd, j even $|a_i - a_j| = 2$.
 So given $\epsilon < 2$, one cannot find N to satisfy the defn of being Cauchy.

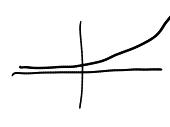
(b) Consider a sequence $(u_n)_{n=1}^{\infty}$ in \mathbb{R}^k . If $\|u_{n+1} - u_n\| \rightarrow 0$ as $n \rightarrow \infty$ then the sequence (u_n) is convergent.

FALSE: Consider $u_n = \sum_{k=1}^n \frac{1}{k}$. Then $u_{n+1} - u_n = \frac{1}{n+1} \xrightarrow{n \rightarrow \infty} 0$
 but $\forall M > 0 \ \exists$ some $N : u_N = \sum_{k=1}^N \frac{1}{k} > M$.
 Hence (u_n) diverges (to $+\infty$).

(c) If a nonempty set $A \subset \mathbb{R}^k$ is bounded then $\text{diam}(A) \in \mathbb{R}$. (Recall: $\text{diam}(A) = \sup\{\|x - y\| : x, y \in A\}$.)

TRUE: A bdd $\Leftrightarrow A \subset B(R, 0)$. Then $\forall x, y \in A, x, y \in B(R, 0)$ so that
 $\|x - y\| \leq \|x\| + \|y\| \leq 2R$. Hence $\text{diam } A \leq 2R \in \mathbb{R}$.

(d) Let $n, k \geq 1$ and $f : \mathbb{R}^n \rightarrow \mathbb{R}^k$ be defined over all \mathbb{R}^n . If f is continuous and $D \subset \mathbb{R}^n$ is closed, then $f(D)$ is closed in \mathbb{R}^k .

FALSE: $n = k = 1$; $f(x) = e^x$. 

$D = \mathbb{R}$ closed in \mathbb{R} ;
 $f(\mathbb{R}) = (0, +\infty)$ not closed in \mathbb{R} .

2. For a bounded sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} , define the set $S = \{x \in \mathbb{R} : x < a_n \text{ for infinitely many } n\}$.

(a) Show that S is nonempty by explicitly giving an element in S .

(a_n) is bounded. Any lower bound of the set $\{a_n\}$ is in S .

(b) Why is $\sup S$ finite? (Denote this \sup by a .)

S is bounded from above by any upper bound of $\{a_n\}$.
Then by Completeness, \sup exists.

(c) Show that (a_n) has a subsequence which converges to a . Do this by first constructing a subsequence $(a_{n_k})_{k=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ (tell why the indices can be chosen in an increasing manner); then you must show that the subsequence you constructed converges to a . (Prove all these from scratch! Do not use Bolzano-Weierstrass theorems here. Because your proof will be a new proof of the Bolzano-Weierstrass Theorem I: *Every bounded sequence in \mathbb{R} has a convergent subsequence.*)

$a = \sup S$. Equivalently a is an upper bound for S and $\forall \epsilon > 0$ $(a - \epsilon, a]$ contains an element of S . So $\forall k$, choose an element s_k of S in $(a - \frac{1}{k}, a]$.

If there is not only many a_n 's $< a$ then there's a decreasing subseq of (a_n) with $\lim = a$.

Otherwise $s_k \in S \Leftrightarrow \exists$ only many elts of (a_n) in $(a - \frac{1}{k}, a]$. Choose one with index n_k greater than the previously chosen n_{k-1} .
claim. The constructed $(a_{n_k})_{k=1}^{\infty}$ converges, with limit $= a$. PROVE IT!

3. Consider a sequence $(b_n)_{n=1}^{\infty}$ in \mathbb{R}^k , $k \geq 1$. Suppose there is some real $c \in (0, 1)$ such that for all n , $|b_{n+1} - b_n| \leq c|b_n - b_{n-1}|$. Prove that the sequence (b_n) is convergent. (Hint: • Bound the differences in terms of $|b_2 - b_1|$. • Recall the sum formula for $1 + r + \dots + r^k$. • Cauchy.)

Observe $\forall j \geq 2$: $|b_{j+1} - b_j| \leq c \cdot |b_j - b_{j-1}| \leq \dots \leq c^{j-1} \cdot |b_2 - b_1|$.

Then $\forall i > j \geq 2$: $|b_i - b_j| \leq |b_i - b_{i-1}| + \dots + |b_{j+1} - b_j|$

$\leq (c^{i-2} + c^{i-3} + \dots + c^{j-2}) \cdot |b_2 - b_1|$

$$= \frac{1 - c^{i-1} - (1 - c^{j-2})}{1 - c} \cdot |b_2 - b_1| = \Delta : \text{fixed}$$

$$= c^{j-2} \cdot (1 - c^{i-j+1}) \cdot \Delta \leq c^{j-2} \cdot \Delta$$

i.e. $N-2 > \frac{\log \epsilon / \Delta}{\log c}$

Thus given $\epsilon > 0$, choose N s.t. $c^{N-2} \cdot \Delta < \epsilon$

so that $\forall i, j > N$: $|b_i - b_j| \leq c^{j-2} \cdot \Delta < c^{N-2} \Delta < \epsilon$

So (b_n) is Cauchy, therefore convergent in \mathbb{R} .

4. Let K be closed and P be open in \mathbb{R}^n . Then $K - P$ is closed in \mathbb{R}^n . Fill in the blank and prove that statement.

Observe $K - P = K \cap P^c$ is closed because K & P are closed.