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1. Prove or give a counter-example:

(a) Every bounded sequence in R¥ is Cauchy.

rALSE ¢ a,= ()" bounded, Tor V i odd, §even ooy l= 2.
So gven E<2, one cannol rﬁ;\dN fo salisfly the dofn of bein Cowucb)

(b) Consider a sequence (u,)%; in R*. If ||u,41 — un|| — 0 as n — oo then the sequence (u,,) is
convergent.
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() If a nonempty set A C R* is bounded then diam(A) € R. (Recall: diam(A) = sup{||z—y|| : z,y € A}.)

TRUE : A bdd © ACDH(R,0). Then Ve wEA | %,ﬁeg(g,o) so that
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(d) Let n,k > 1 and f : R® — R¥ be defined over all R". If f is continuous and D C R" is closed,
then f(D) is closed in R*.
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2. For a bounded sequence (a,)5°, in R, define the set S = {z € R: x < a,, for infinitely many n’s}.

(a) Show that S is nonempty by explicitly giving an element in S.

@) is Pounded. Ay lower lound of tre ek o} s 0 &
(b) Why is sup S finite? (Denote this sup by a.)

S is bundd b .
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(c) Show that (a,) has a subsequence which converges to a. Do this by first constructing a subsequence
(an, )72 of (a,)22, (tell why the indices can be chosen in an increasing manner); then you must show that
the subsequence you constructed converges to a. (Prove all these from scratch! Do not use Bolzano-Weierstrass
theorems here. Because your proof will be a new proof of the Bolzano-Weierstrass Theorem I: Every bounded sequence in R

has a convergent subsequence.)
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3. Consider a sequence (b,)%, in R* k > 1. Suppose there is some real ¢ € (0,1) such that for all n,

|bpi1 — bn| < ¢|b, — by—1]. Prove that the sequence (b,,) is convergent. (Hint: e Bound the differences in
terms of |by — b1|. ® Recall the sum formula for 1 +7 + ... +r*. e Cauchy. )
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4. Let K be closed and P be open in R". Then K — P is M in R™. Fill in the blank and prove that

statement.

Obsene  K-P =K NP5 clogd beconse K & P are osd.



