

1	2	3	4	Σ
25 pts	25 pts	25 pts	25 pts	100 pts

Date: December 3, 2025
 Time: 17:00-19:00

Full Name:

Below, \rightsquigarrow means "write here; nowhere else!"

1. For a compact set $A \in \mathbb{R}^n$ and a function $f : A \rightarrow \mathbb{R}$, the graph Γ_f of f is defined as the set

$$\Gamma_f = \{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} \mid y = f(\mathbf{x})\} \subset \mathbb{R}^{n+1}.$$

(a) [10] Show: if f is continuous on A then Γ_f is compact.
 (b) [5] Remind me the compactness in \mathbb{R}^n in terms of sequences:

$\rightsquigarrow A \subset \mathbb{R}^n$ is compact if and only if ... something about sequences every sequence in A has a convergent subsequence with limit in A .

(c) [10] Show: if Γ_f is compact then f is continuous on A . (Hint: I recommend proving the contrapositive. Assume f is not continuous at $\mathbf{x} \in A$. This means something in terms of sequences. Now aim at failing your definition in part (b).)

(a) Observe the function $F : \mathbb{R}^n \rightarrow \mathbb{R}^{n+1}$, $F(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x}))$ is a continuous function. This is because its component funcs id & f are cont. Therefore $F(A) = \Gamma_f$ is compact.

(b) Suppose f is not cont at \mathbf{x} .

Then there is a sequence (\mathbf{x}_n) in A with $\lim \mathbf{x}_n = \mathbf{x}$ but $\lim f(\mathbf{x}_n) \neq f(\mathbf{x})$. If Γ_f is not bounded then we're done. So suppose Γ_f is bounded.

We show Γ_f is not closed. Take $\epsilon > 0$ such that outside $B_\epsilon(f(\mathbf{x}))$, there are only many $f(\mathbf{x}_n)$'s. Since Γ_f is bounded, this outside sequence is bounded too. So it has a convergent subseq. $f(\mathbf{x}_{n_k})$ with limit $\alpha \in \mathbb{R}$.

Note $\alpha \neq f(\mathbf{x})$. In this way, we found a sequence (\mathbf{x}_{n_k}) in A with $\lim \mathbf{x}_{n_k} = \mathbf{x}$ while $(f(\mathbf{x}_{n_k}))$ converges to $\alpha \neq f(\mathbf{x})$.

Equivalently the sequence $u_k = (\mathbf{x}_{n_k}, f(\mathbf{x}_{n_k}))$ in Γ_f converges to $(\mathbf{x}, \alpha) \neq (\mathbf{x}, f(\mathbf{x}))$. So $\lim u_k \notin \Gamma_f$. This shows Γ_f is not closed.

2. (p.38) Suppose S is a connected set in \mathbb{R}^2 that contains the points $(1, 3)$ and $(4, -1)$. Show that S contains at least one point on the line $x = y$. (Hint: Consider the function $h(x, y) = x - y$.)

h is a continuous function on S & S is connected.
Therefore $h(S)$ is an interval I . Moreover $h(1, 3) = -2$, $h(4, -1) = 3$.
Hence $0 \in I$, i.e. $\exists (x, y) \in S$ s.t. $h(x, y) = x - y = 0$.

3. (a) [4] Let $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}$ and $\vec{a} = (a_1, a_2) \in \mathbb{R}^2$. Give the explicit definition of differentiability of φ at \vec{a} .
 (I started the definition below; you go on. In your definition put a vector on top of every letter which denotes something in \mathbb{R}^2 . In your definition we must also see the little-o notion and its explanation.)

$\rightsquigarrow \varphi$ is differentiable at $\vec{a} = (a_1, a_2)$ if there exists some $\vec{m} \in \mathbb{R}^2$ satisfying
 for all $\vec{h} \in \mathbb{R}^2$: $\varphi(\vec{a} + \vec{h}) = \varphi(\vec{a}) + \vec{m} \cdot \vec{h} + E(\vec{h})$
 where $E : \mathbb{R}^2 \rightarrow \mathbb{R}$ is $o(|\vec{h}|)$, i.e. $E(\vec{h}) / |\vec{h}| \xrightarrow[\vec{h} \rightarrow 0]{} 0$.

Now consider the function $g(x) = \begin{cases} \frac{x^2 y^2}{x^4 + y^3}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0). \end{cases}$

(b) [6] Compute $\partial_1 g(0, 0)$ and $\partial_2 g(0, 0)$.

(c) [5] If g were differentiable at $(0, 0)$ what would be its derivative $\nabla g(0, 0)$?

(d) [10] Assume g satisfies your differentiability definition in part (a). In that case show that your claim for $\nabla g(0, 0)$ in part (c) causes the contradiction that the error made does not satisfy the little-o condition in part (a). Show your computation about this little-o contradiction explicitly and finish your discussion with a clear, explicit conclusion. (Side note: This part proves that g is not differentiable at $(0, 0)$.)

$$(b) \partial_1 g(0, 0) = \lim_{t \rightarrow 0} \frac{1}{t} [f(0+t, 0) - f(0, 0)] = 0$$

$$\partial_2 g(0, 0) = \lim_{t \rightarrow 0} \frac{1}{t} [f(0, 0+t) - f(0, 0)] = 0$$

(c) If g were differentiable at $(0, 0)$, its derivative $\nabla g(0, 0)$ would be $\nabla g(0, 0) = (0, 0)$.

(d) Suppose g is diffable at $(0, 0)$. Then

$$g(h_1, h_2) = g(0, 0) + (0, 0) \cdot (h_1, h_2) + E(\vec{h}), \quad E \text{ is } o(|\vec{h}|).$$

$$\Leftrightarrow E(\vec{h}) = \frac{h_1^2 h_2^2}{h_1^4 + h_2^3} \text{ is } o(|\vec{h}|), \text{ i.e. } \lim_{\vec{h} \rightarrow 0} \frac{h_1^2 h_2^2}{h_1^4 + h_2^3} \xrightarrow[\sqrt{h_1^2 + h_2^2}]{} 0.$$

However for $h_2 = kh_1$, $\lim_{\substack{\vec{h} \rightarrow 0 \\ (k \in \mathbb{R})}} \left| \frac{h_1^2 k^2 h_1^2}{(h_1^4 + k^2 h_1^3) \cdot h_1 \sqrt{1+k^2}} \right| = \lim_{h_1 \rightarrow 0} \left| \frac{k^2}{(h_1 + k) \sqrt{1+k^2}} \right|$
 $\left(\begin{array}{l} h_2 = kh_1 \\ h_1 \rightarrow 0 \end{array} \right) = \frac{k^2}{|k| \sqrt{1+k^2}}.$ Since this limit depends on k , \lim does not exist.
 $E(\vec{h})$ cannot be $o(|\vec{h}|)$.

4. (p.94) (a) [15] Show that $|\sin x - x + x^3/6| < 0.09$ for $|x| \leq \pi/2$.

(b) [10] How large do you have to take k so that the k^{th} -order Taylor polynomial $P_{0,k}(x)$ of $\sin x$ centered at 0 approximates $\sin x$ to within 0.01 for $|x| \leq \pi/2$?

(a) $\sin x = P_{0,4}(x) + R_{0,4}(x)$ where $P_{0,4}(x) = x - \frac{x^3}{6}$ is the deg-4 Taylor polynomial of $\sin x$ centered at 0, and

$R_{0,4}(x) = \frac{f^{(5)}(c)}{5!} x^5$, c btw 0 & x , is the Lagrange remainder.

$$f^{(4)}(c) \approx \text{Sinc.} \quad \text{So} \quad |R_{0,4}(x)| \leq \frac{x^5}{5!} \stackrel{|x| \leq \pi/2}{\leq} \frac{\pi^5}{2^5 \cdot 120} < \frac{320}{2^5 \cdot 120} = \frac{1}{12}$$

(b) We need $\frac{(\pi/2)^n}{n!} < 0.01$; so $100\pi^n < 2^n \cdot n!$. I think $n \geq 7$ would do.

So we need the 6th order Taylor polynomial: $x - \frac{x^3}{6} + \frac{x^5}{120}$.