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Below, ~» means ”write here; nowhere else!”

1. For a compact set A € R" and a function f: A — R, the graph I'y of f is defined as the set
Iy ={(xy) eR"xR|y = f(x)} CR"".

(a) [10] Show: if f is continuous on A then I'y is compact.
(b) [5] Remind me the compactness in R™ in terms of sequences:
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(c) [10] Show: if I'; is compact then f is continuous on A. (Hint: I recommend proving the contrapositive. Assume

f is not continuous at x € A. This means something in terms of sequences. Now aim at failing your definition in part (b) )
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2. (p.38) Suppose S is a connected set in R? that contains the points (1, 3) and (4, —1). Show that S contains
at least one point on the line = y. (Hint: Consider the function h(z,y) =z —y.)
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3. (a) [4] Let ¢ : R? » R and @ = (a1, as) € R% Give the explicit definition of differentiability of ¢ at a.
(I started the definition below; you go on. In your definition put a vector on top of every letter which denotes something in

R2. In your definition we must also see the little-o notion and its explanation.)
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Now consider the function g(x) = { zd 4 y3’ (z,y) # (0,0)
(z,y) = (0,0).

(b) [6] Compute 0;¢(0,0) and 0»¢(0, O)

(c) [5] If g were differentiable at (0,0) what would be its derivative Vg(0,0)?

(d) [10] Assume g satisfies your differentiability definition in part (a). In that case show that your claim
for Vg(0,0) in part (c) causes the contradiction that the error made does not satisfy the little-o condition

in part (a). Show your computation about this little-o contradiction explicitly and finish your discussion
with a clear, explicit conclusion. (Side note: This part proves that g is not differentiable at (0,0).)
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4. (p.94) (a) [15] Show that |sinz — x + 23/6| < 0.09 for |z| < 7/2.
(b) [10] How large do you have to take k so that the k'"-order Taylor polynomial Py (z) of sinz centered
at 0 approximates sin z to within 0.01 for |z| < 7/27?
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