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In this exam, X = (X, d) denotes an arbitrary metric space; (V, || - ||y) denotes an arbitrary normed space. A
metric g on a set Y that satisfies the stronger axiom g(a, c) < max(g(a,b), g(b,c)) for all a,b,c € Y is called an
ultrametric on Y.
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1. (a) (p. b) For any =,y € X, let d'(z,y) = min(d(z,y),1). Show that this bounded d’ is also a metric on X.
(b) (p. 74) Show that (X, d’) is homeomorphic to (X, d) when (X, d) is a bounded space.
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(p. 65) All linear mappings 7" : (R™,|| - ||1) — V are continuous.
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3. Consider the space € of all continuous functions from [0, 1] to [—1, +1] with the co-norm (the supremum
norm). Show that the set P = {f € € :|f(z)| > 0 for all x € [0, 1]} is open in C.
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For this page do not use any other paper for solutions. Use the spaces provided below.

4. TRUE or FALSE. 8 pts each... Either prove or refute. Refuting is a proof; you can do this by giving an
explicit counterexample and proving that that example works.

(a) Every function from X to a discrete metric space is continuous.

FALSE : Let X=R | Y a deael spae with o, bEY.
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(b) |x]]1/2 is a norm on R", n > 0.

FALSE: Tor n=2 and (40) (01)€R?

60« @, = 1 (41, = (F+T) =4

wh\e qu,Sle NeguUo frj
(O, 116y, = 1+ 4 =2 e |

(c) Let B be an arbitrary open ball in a space Y with an ultrametric g. Then any point of B is a center
of B
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Hence B (y) < Be(W). Simbody By = B0

5. TRUE or FALSE? 3 pts each... No justification required. An incorrect answer cancels a correct one.

1. E In any metric space, any finite subset has empty interior.
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the norm-oo unit sphere in R?, its diameter in any p- norm is 2. srm,e
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h respect to any p-norm on R?, the sequence <(;, J12)> ~converges to (0,0).

The sequeanca conees to O in Euchdaan nomm . Hendd any p-norm.

D. D Let d and d' be equivalent metrics on X.
A sequence is Cauchy with respect to dif and only if it is Cauchy with respect to d'.

6. j A linear mapping from one normed space to another is continuous if and only if it is bounded on

bounded sets.



