

1	2	3	4	5	\sum
PROPOSED		SOLUTIONS			

Date: October 27, 2025
 Time: 17:00-19:00

In this exam, $X = (X, d)$ denotes an arbitrary metric space; $(V, \|\cdot\|_V)$ denotes an arbitrary normed space. A metric g on a set Y that satisfies the stronger axiom $g(a, c) \leq \max(g(a, b), g(b, c))$ for all $a, b, c \in Y$ is called an ultrametric on Y .

Recall the expression for the p -norm over \mathbb{R}^n : $\|\mathbf{x}\|_p \stackrel{\text{def}}{=} \left(\sum_{j=1}^n |x_j|^p \right)^{1/p}$.

1. (a) (p. 5) For any $x, y \in X$, let $d'(x, y) = \min(d(x, y), 1)$. Show that this *bounded* d' is also a metric on X .
 (b) (p. 74) Show that (X, d') is homeomorphic to (X, d) when (X, d) is a bounded space.

(a) $\bullet d'(x, y) = 0 \Leftrightarrow d(x, y) = 0 \Leftrightarrow x = y$. $\bullet d'(x, y) = d'(y, x)$.
 $\bullet d'(x, y) \leq \min(d(x, z) + d(y, z), 1) \leq \min(d(x, z), 1) + \min(d(y, z), 1) = d'(x, z) + d'(y, z)$ ↳ needs justification

(b) d and d' are equivalent:

$\forall x, y \in X: d'(x, y) \leq d(x, y) \leq M \cdot d'(x, y)$ where M is a bound for d over X .

By thm, the result follows.

Note. Claim true even if (X, d) is not bounded: $\forall B^d$ is open wrt d' } Can you show
 $\& \forall B^{d'}$ is open wrt d . } this?

2. Prove directly from definitions:

(p. 65) All linear mappings $T: (\mathbb{R}^n, \|\cdot\|_1) \rightarrow V$ are continuous.

Fix a basis $\{u_1, \dots, u_n\}$ for \mathbb{R}^n . Given T , set $M = \max_j \|Tu_j\|$.

For $u \in \mathbb{R}^n$, express $u = \sum a_j u_j$. For continuity at $v = \sum b_j u_j$, given $\epsilon > 0$, we want:
 $\epsilon > \|Tu - Tv\| = \sum |a_j - b_j| \|Tu_j\| \leq M \sum |a_j - b_j| \leq M \cdot \|u - v\|_1$ ↳ Note that without the red part, we already proved T is Lipschitz

So just choose $\delta = \epsilon/M$. Then $\|u - v\|_1 < \delta \Rightarrow \|Tu - Tv\|_V \leq M \cdot \|u - v\|_1 < \epsilon$. So T is cont.

No "big thms" are allowed here. Just use the basic definitions.

3. Consider the space \mathcal{C} of all continuous functions from $[0, 1]$ to $[-1, +1]$ with the ∞ -norm (the supremum norm). Show that the set $P = \{f \in \mathcal{C} : |f(x)| > 0 \text{ for all } x \in [0, 1]\}$ is open in \mathcal{C} .

Let $g \in P$. Set $s = \inf_{x \in [0, 1]} |g(x)| = \min|g(x)|$. Note $s > 0$.

claim: $B_{\frac{s}{2}}(g) \subset P$. pf. Let $h \in B$. Then $\forall x \in [0, 1]$, $|g(x)| \leq |g(x) - h(x)| + |h(x)| < \frac{s}{2} + |h(x)|$

$$\Rightarrow \forall x, |h(x)| > |g(x)| - \frac{s}{2} \geq s - \frac{s}{2} = \frac{s}{2}$$

So $h \in \mathcal{C}$.

For this page do not use any other paper for solutions. Use the spaces provided below.

4. TRUE or FALSE. 8 pts each... Either prove or refute. Refuting is a proof; you can do this by giving an explicit counterexample and proving that that example works.

(a) Every function from X to a discrete metric space is continuous.

FALSE: Let $X = \mathbb{R}$, Y a discrete space with $a, b \in Y$.

Consider $f: \mathbb{R} \rightarrow Y$, $f(x) = \begin{cases} a, & x \in \mathbb{Q} \\ b, & x \notin \mathbb{Q} \end{cases}$. OR easier: $\text{id}: (\mathbb{R}, \text{eucl}) \rightarrow (\mathbb{R}, \text{discrete})$

Observe $\forall \delta > 0$, $f(B_\delta(0)) = \{a, b\}$.

So given $0 < \epsilon < 1$, there is no $\delta > 0$ s.t. $f(B_\delta(0)) \subset B_\epsilon(a) = a$

(b) $\|x\|_{1/2}$ is a norm on \mathbb{R}^n , $n > 0$.

FALSE: For $n=2$ and $(1,0), (0,1) \in \mathbb{R}^2$

$$\|(1,0) + (0,1)\|_{1/2} = \|(1,1)\|_{1/2} = (\sqrt{1} + \sqrt{1})^2 = 4$$

while

$$\|(1,0)\|_{1/2} + \|(0,1)\|_{1/2} = 1 + 1 = 2$$

triangle inequality fails

(c) Let B be an arbitrary open ball in a space Y with an ultrametric g . Then any point of B is a center of B .

TRUE: Let $B = B_r(y) = \{x \in Y \mid g(x, y) < r\}$

Take $z \in B$. Then $\forall x \in B$, $g(x, z) \leq \max(g(x, y), g(y, z))$

Hence $B_r(y) \subseteq B_r(x)$. Similarly $B_r(x) \subseteq B_r(y)$.

5. TRUE or FALSE? 3 pts each... No justification required. An incorrect answer cancels a correct one.

1. **F** In any metric space, any finite subset has empty interior.

In a discrete space, the interior of a singleton is nonempty.

2. **T** For any $a \neq b \in X$, there are open sets A and B in X such that $a \in A$, $b \in B$, $A \cap B = \emptyset$.

Set $r = d(a, b)$. Then the open balls $B_{r/2}(a)$ and $B_{r/2}(b)$ are disjoint.

3. **F** For the norm- ∞ unit sphere in \mathbb{R}^2 , its diameter in any p -norm is 2.

4. **T** $d_1(A, B) = 4$ in the 1-norm.

$\left(\left(\frac{1}{j}, \frac{1}{j^2} \right) \right)_{j=1}^{\infty}$ converges to $(0, 0)$.

The sequence converges to 0 in Euclidean norm. Hence in any p -norm.

5. **F** Let d and d' be equivalent metrics on X .

More carefully: $(\mathbb{R}, \text{eucl}) \& (\mathbb{R}, d)$ with $d(x, y) = |\arctan x - \arctan y|$

A sequence is Cauchy with respect to d if and only if it is Cauchy with respect to d' .

6. **T** $(0, 1, \text{eucl})$ homeom to $(\mathbb{R}, \text{eucl})$. However $(1 - \frac{1}{n})_{n=1}^{\infty}$ is Cauchy in the 1st, not in 2nd.

A linear mapping from one normed space to another is continuous if and only if it is bounded on bounded sets. *or them*