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In this exam, X = (X,d) and Y = (Y, 7) denote metric spaces; A C X is a subspace of X.
(V|| - llv) and (W, ]| - ||w) are Banach spaces. Any vector space in this exam is over R.
~» means ~write here”.

You can use any theorem that was proven in my classes. Moreover I encourage you use them instead of proving
many things from scratch.

1. Let A be sequentially compact in X.
(a) [2] Give the definition of sequential compactness:
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(b) [3] Fill in the blanks: if g : P — S is Contnuoy$  and P s compact, then so is QL
(c) [20] (p. 129) Let z € X — A. Show that there exists a point a € A such that d(z,a) = d(z, A).
Recall: d(x, A) = inf{d(z,a)|a € A}. Hint: The quickest proof is through part (b).
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. (p. 143) In an arbitrary metric space, if you don’t have a nice theorem like Heine-Borel, it is in general difficult to find

compact subspaces. Here is a famous compact subspace of £2.
(a) [4] Give the definition of the space £? and the associated norm || - ||o:
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The Hilbert cube K C 2 is the set of all sequences a = (a,,)2; € ¢? such that 0 < a,, < 1/n for each n.
We show K is compact by showing that K is (¢) complete, and (d) totally bounded.
(b) [10] Show that for any a € K¢, there is r > 0 such that B,.(a) C K¢ (Recall ¥b € (*,Ym, |b,,| < ||b]]2-)

This proves K is closed in ¢2.
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(c) [5] How does it follow from part (b) that K is complete?

T complee KA dosed =5 K complele

(d) [6] Show that K )is totally bounded. Hint: Ifxou delete the tails of sequences, you can cover what remains by
finitely many e-balls. Why? After this, how would you proceed?
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3. Suppose X is compact.
(a) [2] Give the definition of the sup norm on the space C(X,R):

> For f € C(X,R), \‘F” = S\Ag( ‘{(f)ﬂ

(b) [5] Tell explicitly the product metric g on the product space C'(X,R) x X:
(Us

e this metric in part (c). If you cannot answer (a)&(b) correctly, it will be impossible to get any points in part (c)!)

S (XY (SM)) = wo < £ 9”00,&,((%@)

(c) [18] (p. 161) Consider the function v : C(X,R) x X — R, v(f,x) = f(z). Show that v is continuous.
Hint: Given o € R and v(f,z) = a; when € > 0 is given, find an open ball B with center (f,z) such that v(B) lies in B («).

YE, gua €0, 3§20 sk Vrgex, dug sz |for-fO[<E
NO\/J N@m (Xé“)\ w(ﬂ/‘ U({,%X {:(')Q OQ aind Sweﬂ >0,
Set U {(a,0) €CORY XX | 19f11,<E) & qx(g,ﬂdg[{},w in COAX.,
Then V(g9 U\S) Xw(g,g)"v(wc,%)]:’g(g)—{(?O|4 ‘9(9)—{(@]\# [£y)- £
< ¢+ £/ = E,
s proves u(u\;c% . (£60) .



. (a) [3] Give the definition of uniform continuity for a function g : X — Y=

- 1826 3§, : Yng€eX Ay & = d, (900, 3W)<E,

(b) [6] (p. 168) Let h : V' — W be linear and continuous. Show that A is uniformly continuous.

Let D C V be a dense vector subspace of V; f: D — W be linear and continuous (and hence uniformly
continuous by (b)). We have proven that such an f has a unique continuous extension F': V. — W.

(c) [4] Remind me how the extension F' is defined at a point x € V' — D:

~

Take ) (qﬂ) n D wih e «. DeﬁY\Q F(%)IV!I’QO‘F (o) .

(d) [6] (p. 168) Show that F' is linear too.
(e) [6] (p. 168) If for all z € D, ||f(x)|lw < K -||z||v then prove that for all x € V| ||F(2)||lw < K - ||z]|v.

(This implies that f and its unique extension F have the same operator norm.)
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