

1	2	3	4	Σ
PROPOSED	SOLUTIONS			
25 pts	25 pts	25 pts	25 pts	100 pts

Date: December 1, 2025	Full Name:
Time: 17:00-19:00	

In this exam, $X = (X, d)$ and $Y = (Y, \tau)$ denote metric spaces; $A \subsetneq X$ is a subspace of X .
 $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ are Banach spaces. Any vector space in this exam is over \mathbb{R} .
 \rightsquigarrow means "write here".

You can use any theorem that was proven in my classes. Moreover I encourage you use them instead of proving many things from scratch.

1. Let A be sequentially compact in X .

(a) [2] Give the definition of sequential compactness:

 A is sequentially compact if every sequence in A has a convergent subsequence in A .

(b) [3] Fill in the blanks: if $g : P \rightarrow S$ is continuous and P is compact, then so is $g(P)$.

(c) [20] (p. 129) Let $x \in X - A$. Show that there exists a point $a \in A$ such that $d(x, a) = d(x, A)$.

Recall: $d(x, A) \doteq \inf\{d(x, a) | a \in A\}$. Hint: The quickest proof is through part (b).

Recall $d : X \times X \rightarrow \mathbb{R}$ is continuous. Fix $x \in X - A$. Since $\{x\} \times A$ is compact, $d(\{x\} \times A)$ is compact. Hence d attains its minimum at some point $(x, a) \in \{x\} \times A$.

2. (p. 143) In an arbitrary metric space, if you don't have a nice theorem like Heine-Borel, it is in general difficult to find compact subspaces. Here is a famous compact subspace of ℓ^2 .

(a) [4] Give the definition of the space ℓ^2 and the associated norm $\|\cdot\|_2$:

↪ $\ell^2 = \text{the set of real sequences } a = (a_n) \text{ with } \sum_{n=1}^{\infty} a_n^2 \text{ finite.}$
 $\|a\|_2 = \left(\sum_{n=1}^{\infty} a_n^2 \right)^{1/2}$

The Hilbert cube $K \subset \ell^2$ is the set of all sequences $a = (a_n)_{n=1}^{\infty} \in \ell^2$ such that $0 \leq a_n \leq 1/n$ for each n . We show K is compact by showing that K is (c) complete, and (d) totally bounded.

(b) [10] Show that for any $a \in K^c$, there is $r > 0$ such that $B_r(a) \subset K^c$. (Recall $\forall b \in \ell^2, \forall m, |b_m| \leq \|b\|_2$.) This proves K is closed in ℓ^2 .

↪ $a \in K^c \Leftrightarrow a \in \ell^2 \text{ and } \exists m: a_m > 1 \text{ (or } a_m < 0\text{). Then set } r = (a_m - \frac{1}{m})/2 \text{ (or } r = \frac{|a_m|}{2}\text{).}$
 In that case $B_r(a) \subset K^c$, because $\forall b = (b_n) \in B_r(a)$,
 $|b_m - a_m| \leq \|b - a\|_2 < r \Rightarrow b_m > \frac{1}{m} \text{ (or } b_m < 0\text{)} \Rightarrow b \notin K$.

(c) [5] How does it follow from part (b) that K is complete?

↪ $\ell^2 \text{ complete } K \subset \ell^2 \text{ closed } \rightarrow K \text{ complete}$

(d) [6] Show that K is totally bounded. Hint: If you delete the tails of sequences, you can cover what remains by finitely many ε -balls. Why? After this, how would you proceed?

$\forall \varepsilon > 0$ given, $\exists N$ s.t. $\sum_{k=N+1}^{\infty} a_k^2 \leq \sum_{k=N+1}^{\infty} \frac{1}{k^2} < \varepsilon/3$, since $\sum \frac{1}{k^2}$ is convergent.

Define $K_N = \{(a_1, \dots, a_N, 0, 0, \dots) \in K\}$. Since $K_N \subset \mathbb{R}^N$ & is bounded, it is totally bounded. Cover it by finitely many $\frac{\varepsilon}{3}$ -balls $B_{\varepsilon/3}(u_i)$.

Now for any $a \in K$, $(a_1, \dots, a_N, 0, 0, \dots)$ lies in some $B_{\varepsilon/3}(u_i)$ then

$\|a - u_i\|_2 = \frac{\varepsilon}{3} + \sum_{n=1}^{\infty} \frac{1}{k^2} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon$, that is, $a \in B_{\varepsilon}(u_i)$.

This proves that given $\varepsilon > 0$, K can be covered by finitely many ε -balls.

3. Suppose X is compact.

(a) [2] Give the definition of the sup norm on the space $C(X, \mathbb{R})$:

$$\text{For } f \in C(X, \mathbb{R}), \quad \|f\|_{\infty} = \sup_{x \in X} |f(x)|$$

(b) [5] Tell explicitly the product metric μ on the product space $C(X, \mathbb{R}) \times X$:

(Use this metric in part (c). If you cannot answer (a)&(b) correctly, it will be impossible to get any points in part (c)!)

$$\mu((f, x), (g, y)) = \max(\|f-g\|_{\infty}, d_X(x, y))$$

(c) [18] (p. 161) Consider the function $v : C(X, \mathbb{R}) \times X \rightarrow \mathbb{R}$, $v(f, x) = f(x)$. Show that v is continuous.

Hint: Given $\alpha \in \mathbb{R}$ and $v(f, x) = \alpha$; when $\varepsilon > 0$ is given, find an open ball B with center (f, x) such that $v(B)$ lies in $B_{\varepsilon}(\alpha)$.

$\forall f$, given $\varepsilon > 0$, $\exists \delta_{\varepsilon, f} > 0$ s.t. $\forall x, y \in X$, $d_X(x, y) < \delta_{\varepsilon, f} \Rightarrow |f(x) - f(y)| < \varepsilon/2$

Now given $\alpha \in \mathbb{R}$ with $v(f, x) = f(x) = \alpha$, and given $\varepsilon > 0$,

Set $U_{\delta} = \{(g, y) \in C(X, \mathbb{R}) \times X \mid \|g-f\|_{\infty} < \varepsilon/2 \text{ & } d_X(y, x) < \delta_{\varepsilon, f}\}$, open in $C(X) \times X$.

Then $\forall (g, y) \in U_{\delta}$, $|v(g, y) - v(f, x)| = |g(y) - f(x)| \leq |g(y) - f(y)| + |f(y) - f(x)| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$.

This proves $v(U_{\delta}) \subset B_{\varepsilon}(f(x))$.

4. (a) [3] Give the definition of uniform continuity for a function $g : X \rightarrow Y$:

$$\rightsquigarrow \forall \varepsilon > 0, \exists \delta_\varepsilon : \forall x, y \in X \quad d_X(x, y) < \delta_\varepsilon \Rightarrow d_Y(g(x), g(y)) < \varepsilon.$$

(b) [6] (p. 168) Let $h : V \rightarrow W$ be linear and continuous. Show that h is uniformly continuous.

Let $D \subset V$ be a dense vector subspace of V ; $f : D \rightarrow W$ be linear and continuous (and hence uniformly continuous by (b)). We have proven that such an f has a unique continuous extension $F : V \rightarrow W$.

(c) [4] Remind me how the extension F is defined at a point $x \in V - D$:

Take any (a_n) in D with limit x . Define $F(x) = \lim_{n \rightarrow \infty} f(a_n)$.

(d) [6] (p. 168) Show that F is linear too.

(e) [6] (p. 168) If for all $x \in D$, $\|f(x)\|_W \leq K \cdot \|x\|_V$ then prove that for all $x \in V$, $\|F(x)\|_W \leq K \cdot \|x\|_V$. (This implies that f and its unique extension F have the same operator norm.)

(b) Recall linear $h : V \rightarrow W$ is continuous iff $\exists K > 0$ s.t. $\|h(x)\|_W \leq K \cdot \|x\|_V, \forall x \in V$.

Given $\varepsilon > 0$, let $\delta_\varepsilon = \varepsilon / K$. Then $\forall x, y \in V$,

$$\|x - y\|_V < \delta_\varepsilon \Rightarrow \|h(x) - h(y)\|_W \leq K \cdot \|x - y\|_V < K \cdot \frac{\varepsilon}{K} = \varepsilon.$$

(d) Let $x, y \in V$; $(a_n), (b_n)$ in D with $\lim a_n = x$, $\lim b_n = y$. Let $\alpha \in \mathbb{R}$.

Observe $\alpha x + y = \lim_{n \rightarrow \infty} (\alpha a_n + b_n)$. Then

$$\text{Then } F(\alpha x + y) = \lim_{n \rightarrow \infty} f(\alpha a_n + b_n) \stackrel{f \text{ is linear}}{=} \lim_{n \rightarrow \infty} \alpha f(a_n) + f(b_n) = \alpha F(x) + F(y).$$

$$\begin{aligned} (e) \quad \forall x \in V, \quad \|F(x)\|_W &= \left\| \lim_{n \rightarrow \infty} f(a_n) \right\|_W = \left\| \lim_{n \rightarrow \infty} f(a_n) \right\|_W \stackrel{\text{norm is contin.}}{\leq} K \cdot \lim_{n \rightarrow \infty} \|f(a_n)\|_W \leq K \cdot \lim_{n \rightarrow \infty} \|a_n\|_V \\ &\approx K \cdot \left\| \lim a_n \right\|_V = K \cdot \|x\|_V. \end{aligned}$$