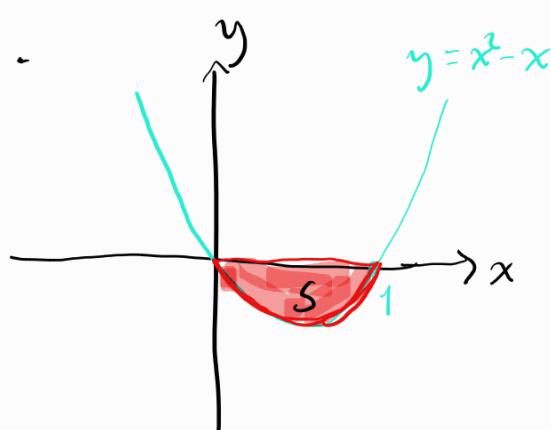


1. For each of the following sets S in the plane \mathbb{R}^2 , do the following: (i) Draw a sketch of S . (ii) Tell whether S is open, closed, or neither. (iii) Describe S^{int} , \overline{S} , and ∂S . (These descriptions should be in the same set-theoretic language as the description of S itself given here.)

- $S = \{(x, y) : 0 < x^2 + y^2 \leq 4\}$.
- $S = \{(x, y) : x^2 - x \leq y \leq 0\}$.
- $S = \{(x, y) : x > 0, y > 0, \text{ and } x + y > 1\}$.
- $S = \{(x, y) : y = x^3\}$.
- $S = \{(x, y) : x > 0 \text{ and } y = \sin(1/x)\}$.
- $S = \{(x, y) : x^2 + y^2 < 1\} \setminus \{(x, 0) : x < 0\}$.
- $S = \{(x, y) : x \text{ and } y \text{ are rational numbers in } [0, 1]\}$.

b.



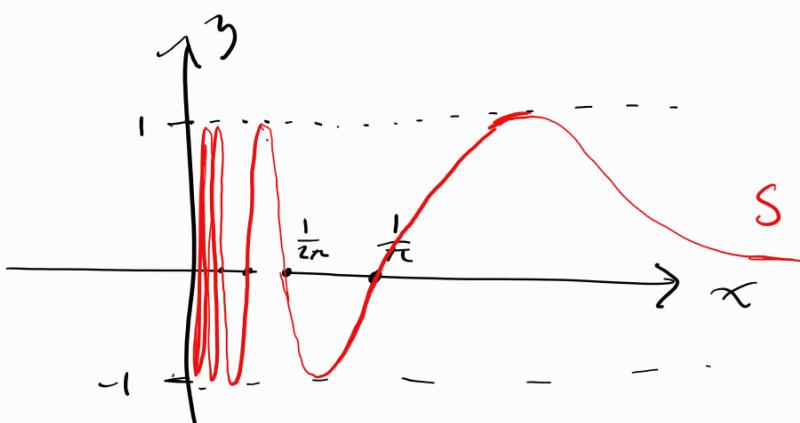
S is closed

$$\partial S = \left\{ (x, y) \mid \begin{array}{l} x^2 - x = y < 0 \\ \text{or} \\ x^2 - x \leq y = 0 \end{array} \right\}$$

$$S^{\text{int}} = S \setminus \partial S$$

$$= \left\{ (x, y) : x^2 - x < y < 0 \right\}$$

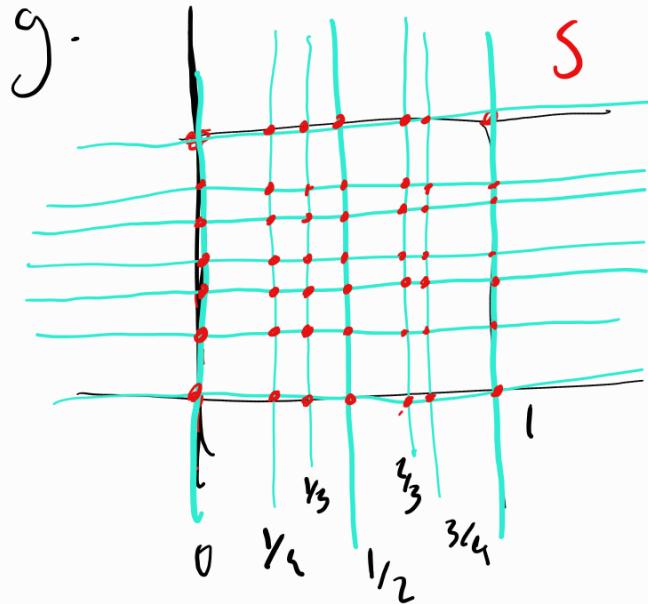
c.



S is neither closed nor open.

$$\partial S = S \cup \{(0, y) : y \in [-1, 1]\}$$

$$S^{\text{int}} = \emptyset \quad \overline{S} = S \cup \partial S$$



S is neither closed nor open.

$$\partial S = [0, 1] \times [0, 1] \\ = \{(x, y) : 0 \leq x, y \leq 1\}.$$

$$S^{\text{int}} = \emptyset.$$

$$\overline{S} = \partial S.$$

Proof that $\partial S = \overline{[0, 1] \times [0, 1]} :$

Take $p = (x, y) \in [0, 1] \times [0, 1]$.

Let $r > 0$. Observe that

$$B\left(\frac{r}{2}, x\right) \times B\left(\frac{r}{2}, y\right) \subset B(r, p).$$

It suffices to show that for each

$x \in \mathbb{R}$, and $\varepsilon > 0$, there is some

$q \in B(\varepsilon, x) \cap \mathbb{Q}$ and $\eta \in B(\varepsilon, x) \cap \mathbb{Q}^c$.

Let $N \in \mathbb{N}$ be large enough so that $10^{-N} < \varepsilon$.

Consider the decimal expansion $x = \sum_{n=-k}^{\infty} x_n 10^{-n}$.
 $(x_n \in \{0, 1, \dots, 9\})$

Clearly $q = \sum_{n=k}^{\infty} x_n 10^{-n}$ satisfies

$$|x-q| = \sum_{n=N+1}^{\infty} x_n 10^{-n} \leq 10^{-N} < \varepsilon,$$

Hence $q \in B(\varepsilon, x) \cap \mathbb{Q}$.

Also we see $B(\varepsilon, x) \cap \mathbb{Q}$ as
 \mathbb{Q} is countably infinite while

$B(\varepsilon, x)$ is not.

2. Show that for any $S \subset \mathbb{R}^n$, S^{int} is open and ∂S and \overline{S} are both closed. (Hint: Use the fact that balls are open, proved in Example 1.)

S^{int} : let $x \in S^{\text{int}}$. By

1.4 Proposition. Suppose $S \subset \mathbb{R}^n$.

- a. S is open \iff every point of S is an interior point.
- b. S is closed \iff S^c is open.

it suffices to show that

$x \in (S^{\text{int}})^{\text{int}}$. As $x \in S^{\text{int}}$,
there is some $r > 0$ s.t. the ball $B(r, x) \subset S$.

As $B(r, x)$ is open, each point
 $y \in B(r, x)$ is interior. Hence
 $y \in S^{\text{int}}$ also. Hence $B(r, x) \subset S^{\text{int}}$.
Hence $x \in (S^{\text{int}})^{\text{int}}$.

\bar{S} is closed.

Let $x \in \partial(\bar{S})$.

Suppose that $x \notin \bar{S}$ for a contradiction. Then $x \notin S$

and $x \notin \partial S$. It follows that

there is some $r > 0$ s.t

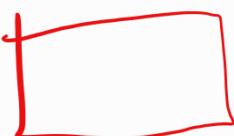
$$B(r, x) \subset S^c$$

Pick $a \in B(r, x) \cap S \neq \emptyset$.

Since $B(r, x) \subset S^c$, we must

have $a \in B(r, x) \cap \partial S$.

Let $r' = r - |a - x|$. Observe that $B(r', a) \subset B(r, x)$. But since $a \in \partial S$, $B(r', a) \cap S \neq \emptyset$. Contradicting



∂S is closed.

Observe that $\partial S = \overline{S} \setminus S^{\text{int}}$.

Indeed, if $x \in \partial S$, then $x \notin S^{\text{int}}$;

and if $x \in \overline{S} \setminus \partial S$, then

(there must be some $r > 0$ s.t

$B(r, x) \cap S^{\text{int}} = \emptyset$, that is, $B(r, x) \subset S^{\text{c}}$,

so $x \in S^{\text{int}}^c$.

So $\partial S = \overline{S} \cap (S^{\text{int}})^c$

Recall that \overline{S} is closed.

And S^{int} is open, hence $(S^{\text{int}})^c$

is closed. We proved in class that
the intersection of closed sets is closed.

Hence ∂S is closed.

Bonus: let $S \subset \mathbb{R}^n$. The

closure \overline{S} is the smallest closed set containing S . Then if if $T \supset S$ is closed, then $T \supset \overline{S}$.

5. Show that the boundary of S is the intersection of the closures of S and S^c .
 6. Give an example of an infinite collection S_1, S_2, \dots of closed sets whose union $\bigcup_{j=1}^{\infty} S_j$ is not closed.

5. Observe that $\partial S = \partial S^c$.

Indeed, $x \in \partial S \stackrel{\text{(definition)}}{\iff} \forall r > 0 \quad B(r, x) \cap S \neq \emptyset$
 and $B(r, x) \cap S^c \neq \emptyset$.

$$\iff x \in \partial S^c,$$

since $(S^c)^c = S$.

Followed def. $\overline{S} = S \cup \partial S$.

$$S_0 \quad \overline{S^c} \cap \overline{S} = (\overline{S} \cup \overline{\partial S}) \cap (S \cup \partial S)$$

$$= \underbrace{(S \cap S)}_{\emptyset} \cup (S^c \cap S) \cup (\partial S \cap S) \cup (\partial S \cap \partial S)$$

$$= \partial S.$$

6. Let $S_j = \left\{ \frac{1}{j} \right\} \subset \mathbb{R}$.

Points are closed. \nearrow Call the union 'S'.

Claim: $0 \in \partial \left(\bigcup_{j=1}^{\infty} S_j \right)$.

Pf: Let $r > 0$. Consider the ball

$$B(r, 0) = (-r, r).$$

Clearly $B(r, 0) \cap S \neq \emptyset$.

$N \in \mathbb{N}$ s.t

And, there is some

$\frac{1}{N} < r$, hence $\frac{1}{N} \in B(r, 0) \cap S$.

Thus 0 , as claimed, is in the boundary.

8. Give an example of a set S such that the interior of S is unequal to the interior of the closure of S .

Let $S = \{x \in \mathbb{R}^n : |x| \neq 1\}$.

Then $\text{int } S = S \neq \mathbb{R}^n = \overline{S} = \text{int } \overline{S}$.

Alternatively, consider $S = \mathbb{Q} \subset \mathbb{R}$.
 $\text{int } S = \emptyset$. But $\text{int } \overline{S} = \overline{S} = \mathbb{R}$.