1. For each of the following sets S in the plane R?, do the following: (i) Draw a
sketch of S. (ii) Tell whether S is open, closed, or neither. (iii) Describe S int
S, and 0S. (These descriptions should be in the same set-theoretic language as
the description of S itself given here.)

):0 < 2% + 92 < 4},

): 22 -2 <y <0}

):x>0,y>0,andx +y > 1}.

) : y = z3}.

):x > 0andy = sin(1/z)}.

)22+ 32 <1} \ {(z,0) : z < 0}.

) : x and y are rational numbers in [0, 1]}.
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2. Show that for any S C R", S™™ is open and 9.5 and S are both closed. (Hint:
Use the fact that balls are open, proved in Example 1.)

1.4 Proposition. Suppose S C R™.

. 73S
o a. Sisopen <= every point of S is an interior point.
S . ,{ 2( é . j b. Sis closed <= S°is open.
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5. Show that the boundary of S is the intersection of the closures of .S and S°.

6. Give an example of an infinite collection S, Sy, . . . of closed sets whose union
Uj=; S; is not closed.
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8. Give an example of a set .S such that the interior of S is unequal to the interior
of the closure of S.




