

4. Let $\{x_k\}$ and $\{y_k\}$ be sequences in \mathbb{R} such that $x_k \rightarrow a$ and $y_k \rightarrow b$. Show that $x_k + y_k \rightarrow a + b$ and $x_k y_k \rightarrow ab$. (Use Theorems 1.10 and 1.15.)

1.10 Theorem. Let $f_1(x, y) = x + y$, $f_2(x, y) = xy$, and $g(x) = 1/x$. Then f_1 and f_2 are continuous on \mathbb{R}^2 and g is continuous on $\mathbb{R} \setminus \{0\}$.

1.15 Theorem. Given $S \subset \mathbb{R}^n$, $\mathbf{a} \in S$, and $\mathbf{f} : S \rightarrow \mathbb{R}^m$, the following are equivalent:

- a. \mathbf{f} is continuous at \mathbf{a} .
- b. For any sequence $\{\mathbf{x}_k\}$ in S that converges to \mathbf{a} , the sequence $\{\mathbf{f}(\mathbf{x}_k)\}$ converges to $\mathbf{f}(\mathbf{a})$.

Apply 1.15 to the case

$S = \mathbb{R}^2$, $\mathbf{f} = f_1$ or $\mathbf{f} = f_2$

and $\mathbf{a} = (a, b)$.

A point $a \in \mathbb{R}^n$ is called an **accumulation point** of a set $S \subset \mathbb{R}^n$ if every neighborhood of a contains infinitely many points of S . (The point a itself may or may not belong to S . Some people use the terms “limit point” or “cluster point” instead of “accumulation point.”) For example, the accumulation points of the interval $(-1, 1)$ in \mathbb{R} are the points in the closed interval $[-1, 1]$, and the only accumulation point of the set $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ is 0.

6. Show that a is an accumulation point of S if and only if there is a sequence $\{x_k\}$ of points in S , none of which are equal to a , such that $x_k \rightarrow a$. (Adapt the proof of Theorem 1.14.)
7. Show that the closure of S is the union of S and the set of all its accumulation points.

Equivalent definition: $x \in \mathbb{R}^n$ is an accumulation point if every neighborhood of x contains a point of S other than x

6. let a be an accumulation point

of S . Let $x_k \in B\left(\frac{1}{k}, a\right) \cap S \setminus \{a\}$.

Then $\lim_{k \rightarrow \infty} x_k = a$.

Let $x_k \in S \setminus \{a\}$ be a sequence of points s.t $\lim_{k \rightarrow \infty} x_k = a$. Let N be a nbhood of a .

Then there is some $\epsilon > 0$ so that $B(\epsilon, a) \subset N$. As $\lim_{k \rightarrow \infty} x_k = a$, there is some K s.t for $k \geq K$ $x_k \in B(\epsilon, a)$. Clearly the set $\{x_k : k \geq K\}$ is an infinite collection. If not, the sequence would have to repeat a certain value, say x_{k_0} infinitely often. But this contradicts the fact that $\lim_{k \rightarrow \infty} x_k = a$, as $x_{k_0} \neq a$.

7. Recall the characterization

1.14 Theorem. Suppose $S \subset \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. Then \mathbf{x} belongs to the closure of S if and only if there is a sequence of points in S that converges to \mathbf{x} .

By the above,
 $a \in \overline{S} \iff \exists$ a sequence $x_k \in S$ $\lim_{k \rightarrow \infty} x_k = a$

 $\iff a \in S$ or \exists a sequence $x_k \in S$ $\lim_{k \rightarrow \infty} x_k = a$.

$\iff a \in S$ or ($a \notin S$ and \exists a sequence $x_k \in S$ $\lim_{k \rightarrow \infty} x_k = a$)

$\iff a \in S$ or a is an accumulation pt of S (by 6).

$\downarrow a \in S \Rightarrow \exists$ a sequence $x_k \in S$ $\lim_{k \rightarrow \infty} x_k = a$.
(take $x_k = a$)

For any propositions p, q we have

$$p \vee q \iff p \vee (\neg p \wedge q)$$

The following are from

Polya, Szegő's book

"Problems and Theorems in
Analysis (Vol I)"

67. The existence of $\lim_{n \rightarrow \infty} s_n$ implies

$$\lim_{n \rightarrow \infty} \frac{s_0 + s_1 + s_2 + \dots + s_n}{n+1} = \lim_{n \rightarrow \infty} s_n.$$

68. If the sequence $p_1, p_2, \dots, p_n, \dots$ of positive numbers converges to the positive value p then

$$\lim_{n \rightarrow \infty} \sqrt[n+1]{p_0 p_1 p_2 \cdots p_n} = p.$$

68.1. The numbers a_0, a_1, a_2, \dots are positive and

$$\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = p.$$

Then $\lim_{n \rightarrow \infty} \sqrt[n]{a_n}$ exists also and has the same value p .

69. Reduce the computation of $\lim_{n \rightarrow \infty} \sqrt[n]{\frac{n^n}{n!}}$ to the computation of $\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n$.

67. Let $\varepsilon > 0$. Denote $s := \lim_{n \rightarrow \infty} s_n$.

Let N be large enough so that

$|s - s_n| < \varepsilon$ for $n \geq N$.

Observe now that for $n \geq N$

$$\left| \frac{s_0 + s_1 + \dots + s_n}{n+1} - s \right|$$

$$= \left| \frac{s_0 + \dots + s_N}{n+1} - \frac{(N+1)s}{n+1} + \frac{s_{N+1} - s + \dots + s_n - s}{n+1} \right|$$

$$\leq \frac{|s_0 + \dots + s_N|}{n+1} - \frac{N}{n+1}|s| + \frac{\varepsilon(n-N)}{n+1},$$

As $n \rightarrow \infty$, we have

$$\frac{|s_0 + \dots + s_N|}{n+1} - \frac{N}{n+1}|s| \rightarrow 0,$$

since N is fixed. Therefore

one can find some M s.t

for $n \geq M$, $\frac{|s_0 + \dots + s_n|}{n+1} - \frac{N}{n+1}|s| < \varepsilon$.

Assuming $n \geq \max\{M, N\}$, we get

$$\left| \frac{s_0 + s_1 + \dots + s_n}{n+1} - s \right| < 2\varepsilon.$$

□

68. Let $s_n = \log p_n$. Apply 67.

68.1 Observe that $a_n = a_0 \left(\frac{a_1}{a_0} \cdot \frac{a_2}{a_1} \cdot \dots \cdot \frac{a_n}{a_{n-1}} \right)$

Denote $p_i = \frac{p_{i+1}}{p_i}$. Then

$$\lim_{n \rightarrow \infty} \sqrt[n]{a_n} = \lim_{n \rightarrow \infty} \sqrt[n]{a_0} \underbrace{\lim_{n \rightarrow \infty} \sqrt[n]{p_i \cdot p_{i+1} \dots p_{n-1}}} = 1$$

"P using 68"

$$= P.$$

69. Let $a_n = \frac{n^n}{n!}$.

$$\begin{aligned} \frac{a_{n+1}}{a_n} &= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{n!}{(n+1)!} \\ &= \left(1 + \frac{1}{n}\right)^n. \end{aligned}$$

Appl'y 68. 1.