|                                        | 1                         | <u> </u> | 2                               | 1                      | L K               |          |
|----------------------------------------|---------------------------|----------|---------------------------------|------------------------|-------------------|----------|
| Sogaziçi University                    |                           |          | 0                               | 4                      | 0                 |          |
| Jath 338 Complex Analysis              |                           |          |                                 |                        |                   |          |
| pring 2024 – First Midterm             | 21  pts                   | 6 pts    | 3+3+6+6+8  pts                  | 20 pts                 | 27 pts            | pts      |
|                                        |                           |          |                                 |                        |                   |          |
| Date: March 26, 2024                   | Full Name                 | e: 🛕     | SVULTIVXI K                     | τV                     |                   |          |
| Time: 17:00-19:00                      |                           | - 11     |                                 |                        |                   |          |
| Throughout the exam $z_0 = 2 + 2i$ and | $\mathcal{A} = \{   z \}$ | z  = 1   | $\mathcal{B} = \{ z - z_0  = 1$ | $1$ and $\mathfrak{C}$ | e are <b>po</b> s | sitively |
| oriented curves.                       |                           |          |                                 |                        |                   |          |
| $-\frac{1}{2}$                         |                           |          |                                 |                        |                   |          |

1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCOR-RECT ANSWER CANCELS A CORRECT ONE.

In this page •  $\Omega \subset \mathbb{C}$  is a region; •  $\omega \in \Omega$  is a fixed point; •  $f : \Omega \to \mathbb{C}$  is a single-valued function; and • f(z) = u(z) + iv(z) with  $u, v : \mathbb{R}^2 \to \mathbb{R}$ .

- 1. **F** f is complex differentiable at  $\omega$  if and only if f is analytic at  $\omega$ .
- 2. If f'(w) exists then u and v are differentiable at w.
- 3. If f is differentiable at w then the partial derivatives  $u_x, v_x$  and  $u_y, v_y$  exist in a neighborhood of w.
- 4. T If f is analytic at  $w = r_0 e^{i\theta_0}$  then  $f'(w) = e^{-i\theta_0}(u_r(w) + iv_r(w))$ .
- 5.  $\square$  Every polynomial is entire.
- 6.  $\Box \Box \int_{\mathcal{B}} \frac{1}{z} dz = 0.$
- 7.  $\int_{\mathcal{A}+\mathcal{B}+\mathcal{C}} \frac{1}{z(z+z_0)} dz = 0.$ 
  - 2. Write down the Cauchy-Riemann equations in the boxes below.

in terms of  $u_x, v_x, u_y, v_y$ :

3. Define the *complex hyperbolic functions* as follows:

$$\sinh z = \frac{1}{2}(e^z - e^{-z}), \ \cosh z = \frac{1}{2}(e^z + e^{-z}).$$

(a) Are these functions multi-valued or single-valued? Why?

(b) Are these functions entire? Why?

Entire since 
$$e^2$$
 is so.

(c) Find the domain of the function  $\tanh z \doteq \frac{\sinh z}{\cosh z}$ .

That is, solve 
$$\cosh 2 = 0$$
:  $e^{2} + e^{-2} = e^{n}$ . Cis  $y + e^{-n} \operatorname{Cis}(-y) = 0$   

$$\Rightarrow \{ \cos y \cdot (e^{n} + e^{-n}) = 0 \xrightarrow{e^{n} > 0} \cos y = 0 \Rightarrow y = \frac{1}{2} + k\pi, k \in \mathbb{Z} \\ \text{Siny} \cdot (e^{n} - e^{-n}) = 0 \xrightarrow{e^{n} > 0} \sin y \neq 0 \& e^{n} = e^{-n} \iff e^{2n} = 1 \Rightarrow n = 0.$$
Hence  $\cosh 2 = 0 \iff 2 = i \left( \frac{1}{2} + k\pi \right)$ 

$$\operatorname{domain} = \left\{ \frac{2}{2} = i \left( \frac{\pi}{2} + k \pi \right) \right\} \\ \left\{ \frac{2}{2} = i \left( \frac{\pi}{2} + k \pi \right) \right\}$$

(d) Compute  $(\tanh z)'$ .

$$(\tanh z)' = \frac{1}{\cosh^2 2}$$

(e) Compute  $\int_{\mathcal{A}+\mathcal{B}-\mathcal{C}} \frac{1}{\cosh^2 z} dz$ . Show your work in detail.

On and around A, B, C the integrand has an antiderivative  $F(z) = \tanh z$ , which is defined everywhere except  $i([\frac{1}{2}+2kT))$ .

So the integral is zero.

result:

4. Find an open domain  $U \subset \mathbb{C}$  as large as possible over which the function  $f(z) = \log(z - i)$  is single valued and analytic.



5. Find all the points at which the function  $g(z) = e^y e^{ix}$  is analytic. (Here z = x + iy.)

$$9(z) = e^{y} \operatorname{Cis} n = e^{y} \operatorname{Cos} n + i e^{y} \operatorname{Sin} n$$

$$CR \operatorname{eqns} : V_{n} = -e^{y} \operatorname{Sin} n = e^{y} \operatorname{Sin} n = v_{y} \xrightarrow{e^{y} \neq 0} \operatorname{Sin} n = 0$$

$$U_{y} = e^{y} \operatorname{Cos} n = -e^{y} \operatorname{Cos} n = -v_{n} \xrightarrow{=} \operatorname{Cos} n = 0$$

$$CR \operatorname{eqns} \operatorname{are} \operatorname{never} \operatorname{satisfied}.$$
Hence  $g(z)$  is nowhere differentiable, nowhere analytic.
$$domain = \emptyset$$