Boğaziçi University

Department of Mathematics
Math 338 Complex Analysis
Spring 2024 - First Midterm

1	2	3	4	5	\sum
21 pts	6 pts	$3+3+6+6+8 \mathrm{pts}$	20 pts	27 pts	pts

Date: March 26, 2024 Time: 17:00-19:00	Full Name: A SUUUTV)	SVY

Throughout the exam $z_{0}=2+2 i$ and $\mathcal{A}=\{|z|=1\}, \mathcal{B}=\left\{\left|z-z_{0}\right|=1\right\}$ and \mathcal{C} are positively oriented curves.

1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCORRECT ANSWER CANCELS A CORRECT ONE.

In this page $\bullet \Omega \subset \mathbb{C}$ is a region; $\bullet \omega \in \Omega$ is a fixed point; $\bullet f: \Omega \rightarrow \mathbb{C}$ is a single-valued function; and \bullet $f(z)=u(z)+i v(z)$ with $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
1.
 f is complex differentiable at ω if and only if f is analytic at ω.
2.
 If $f^{\prime}(w)$ exists then u and v are differentiable at w.
3.
 If f is differentiable at w then the partial derivatives u_{x}, v_{x} and u_{y}, v_{y} exist in a neighborhood of w.
4.
 If f is analytic at $w=r_{0} e^{i \theta_{0}}$ then $f^{\prime}(w)=e^{-i \theta_{0}}\left(u_{r}(w)+i v_{r}(w)\right)$.
5. T Every polynomial is entire.
6. T $\int_{\mathcal{B}} \frac{1}{z} d z=0$.
7. F $\int_{\mathcal{A}+\mathcal{B}+\complement} \frac{1}{z\left(z+z_{0}\right)} d z=0$.
2. Write down the Cauchy-Riemann equations in the boxes below.
\square in terms of $u_{r}, v_{r}, u_{\theta}, v_{\theta}$: \square
3. Define the complex hyperbolic functions as follows:

$$
\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right), \quad \cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right) .
$$

(a) Are these functions multi-valued or single-valued? Why?

Single valued since e^{z} is so.
(b) Are these functions entire? Why?

Entire since e^{z} is so.
(c) Find the domain of the function $\tanh z \doteq \frac{\sinh z}{\cosh z}$.

That is, solve $\cosh z=0$: $e^{z}+e^{-z}=e^{x} . \operatorname{Cis} y+e^{-x} \operatorname{cis}(-y)=0$

$$
\Rightarrow\left\{\begin{array}{l}
\operatorname{Cos} y \cdot\left(e^{x}+e^{-x}\right)=0 \overrightarrow{e^{x}>0, \forall \cos y=0 \Rightarrow y=\pi / 2+k \pi, k \in \mathbb{Z}} \\
\text { Sing. }\left(e^{x}-e^{-x}\right)=0 \xrightarrow{\longrightarrow} \sin y \neq 0 \& e^{x}=e^{-x} \Leftrightarrow e^{2 x}=1 \Rightarrow x=0 .
\end{array}\right.
$$

Hence $\cosh z=0 \Leftrightarrow z=i(\pi / 2+k \pi)$

(d) Compute $(\tanh z)^{\prime}$.

(e) Compute $\int_{\mathcal{A}+\mathcal{B}-\mathcal{e}} \frac{1}{\cosh ^{2} z} d z$. Show your work in detail.

On and around A, B, C the integrand has an antiderivative $F(z)=\tanh z$, which is defined everywhere exceed ; ($\left.\frac{\pi}{2}+2 k \pi\right)$.

So the integral is zero.
zero.
4. Find an open domain $U \subset \mathbb{C}$ as large as possible over which the function $f(z)=\log (z-i)$ is single valued and analytic.

$$
\text { For } z=x+i y, \quad \begin{aligned}
f(z) & =\log (x+i(y-1)) \\
& =\ln r+i \operatorname{Arg}(x+i(y-1))+i 2 k \pi
\end{aligned}
$$

For single-valuedness, set $k=0$ and $\operatorname{Arg} \in(-\pi,+\pi)$.
This choice corresponds to the domain:

$$
\text { domain }=\mathbb{C}-\{x+i \mid x \leqslant 0\}
$$

5. Find all the points at which the function $g(z)=e^{y} e^{i x}$ is analytic. (Here $z=x+i y$.)

$$
g(z)=e^{y} \operatorname{cis} x=\underbrace{e^{y} \cos x}_{u}+i \underbrace{e^{y} \sin x}_{v}
$$

CR eqns: $u_{x}=-e^{y} \sin x=e^{y} \sin x=v_{y} \Rightarrow \sin x=0$

$$
u_{y}=e^{y} \cos x=-e^{y} \cos x=-v_{x} \Rightarrow \cos x=0
$$

CR eqns are never satisfied.
Hence $g(z)$ is nowhere differentiable, nowhere analytic.

