Boğaziçi University	1	2	3	4	5	6	\sum
Department of Mathematics Math 338 Complex Analysis							
Spring 2024 – Second Midterm	15 pts	10 pts	$10{+}12 \text{ pts}$	18 pts	20 pts	8+8 pts	101 pts
Date: April 30, 2024 Fu	Full Name:						
Time: 13:00-15:00		AI	\[]				
You may use every fact that we have already proven in the class. Among those here are							
two for your convenience:							
Cauchy Integral Formula: If f is analytic on and inside a positively oriented contour $\mathcal C$ and a is							
a point in the interior of \mathcal{C} then $f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(z)dz}{(z-a)^{n+1}}$ for every $n \in \mathbb{Z}^{\geq 0}$.							
Extended Liouville Theorem: If f is entire and if $ f(z) \leq A + B z ^k$ for some $k \in \mathbb{Z}^{\geq 0}$; $A, B \in \mathbb{R}^{>0}$							
then f is a polynomial of degree at most k .							
· · · ·							

- 1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCOR-RECT ANSWER CANCELS A CORRECT ONE.
- 1. If f has antiderivative over a region then f is analytic there. (f=F' on a region. So F is2. An analytic function is infinitely differentiable. 3. Given a sequence $(a_n)_{n\in\mathbb{Z}^+}$ of distinct points in \mathbb{C} if there is an entire function g satisfying $g(1/n) = a_n$ for every $n \in \mathbb{Z}^+$, then such a g is unique. (if there were some other h, then $(h-g)(1/n)=0 \forall n$).
 - 2. Let \mathcal{C}_R denote the positively oriented circle centered at 0 with radius R. Write the results (in the form a + ib) in the boxes provided. (Each box takes either full or no points.)

$$\int_{e_3} \frac{\cosh z \, dz}{(z - i\pi/4)^3} = \frac{i\pi\sqrt{2}/2}{i\pi\sqrt{2}/2}$$

$$= (\cosh i\pi/4) = (\cosh i\pi/4)$$

$$= \frac{1}{2} \left(e^{i\pi/4} + e^{i\pi/4} \right)$$

$$= \cos \pi/4 = \sqrt{2}/2$$

3. (a) Find a power series $\sigma(w) = \sum_{n=0}^{\infty} a_n (w-2)^n$ that equals f(w) = 1/w in a disk neighborhood of $2 \in \mathbb{C}$. What is the largest disk $\Delta \subset \mathbb{C}$ where $\sigma(w) = f(w)$?

$$\frac{1}{w} = \frac{1}{w-2+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{w-2}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{w-2}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (w-2)^n$$
this is the largest this is the largest of th

(b) Recall that a contour integral of a power series (in the disk of convergence) can be performed term by term. For any point $z \in \Delta$ and a contour $\mathcal{C} \subset \Delta$ from 2 to z, consider the contour integrals

$$\int_C \sigma(w) dw = \int_C f(w) dw.$$

Evaluating both sides, obtain a power series for Log z around 2 in Δ . (Helping remarks: • Log z is the P.V. of log with branch cut the nonpositive real numbers. • After evaluating each integral above, w should disappear. The results must be a function of z.)

Recall:
$$\frac{d}{dz} \log_2 = \frac{1}{2}$$
. Therefore for C as above,

$$\int_C f(\omega)d\omega = \log_2 - \log_2 2$$
Meanwhile, $\int_C \sigma(\omega)d\omega = \sum_{n=0}^{\infty} \sigma_n \int_C (\omega-2)^n d\omega = \sum_{n=1}^{\infty} \sigma_n \frac{(\omega-2)^n}{n+1} \Big|_{\omega=2}^{\omega=2}$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}(n+1)} (2-2)^{n+1}$$
Hence, $\log_2 = (n2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n \cdot n} (2-2)^n$

4. Consider the function $g(z) = 1/z^2$. Using the result of (3a) above find a power series centered at z = 2 and determine its radius of convergence. Explain your work. (Warning: Do not compute the Taylor expansion by explicit computation.)

By
$$(3\alpha)$$
, $\frac{1}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (2-2)^n$ on Δ . Then
 $-\frac{1}{2^2} = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{2^{n+1}} (2-2)^{n-1}$. Hence
 $\frac{1}{2^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot (n+1)}{2^{n+2}} (2-2)^n$ on Δ ,
 $\frac{1}{2^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot (n+1)}{2^{n+2}} (2-2)^n$ on Δ ,
under derivation.

5. Suppose f is entire and $|f(z)| \leq A + B|z|^{3/2}$. Show that f is a linear polynomial, i.e. its degree is at most 1. (A help: At some point the triangle inequality in the reverse direction might be handy.)

6. (a) Find the Maclaurin series for $\sin z$ by recursively computing the derivatives. Determine the radius of convergence.

Standard computation ... Let's do it once more:

$$s(x) = \sin x$$
. $s(0) = 0$, $s'(0) = 1$, $s''(0) = 0$, $s'''(0) = -1$
 $s^{(4k)}(0) = 0$; $s^{(4k+1)}(0)$; $s^{(4k+2)}(0)$; $s^{(4k+2)}(0)$
So $\sin x = \sum_{n=0}^{\infty} \frac{s^{(n)}(0)}{n!} x^n = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$

 $R = \infty$, since sinz is entire.

0

(b) Find a power series in the form $\sum_{n=0}^{\infty} c_n z^n$ for the function $h(z) = \frac{\sin z}{z}, z \neq 0$. Tell very carefully how and why h can be extended to an entire function.

$$h(2) = \frac{\sin 2}{2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} 2^{2k} \quad (2 \neq 0)$$

However the RHS is 1 at 2=0. So the
xtension $\tilde{h}(2) = \begin{cases} h(2) & 2 \neq 0 \\ 1 & 2 \neq 0 \end{cases}$ is entire, being a power
 $1 & 2 \neq 0 \end{cases}$ is entire, being a power
series with $R = \infty$.