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You may use every fact that we have already proven in the class. Among those here are
two for your convenience:
Cauchy Integral Formula: If f is analytic on and inside a positively oriented contour € and a is
a point in the interior of € then f™(a) = ﬂ / M for every n € Z=°.

270 Jo (2 — a)™t!
Extended Liouville Theorem: If f is entire and if |f(2)| < A+ B|z|* for some k € Z=°; A, B € R>Y
then f is a polynomial of degree at most k.

1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCOR-
RECT ANSWER CANCELS A CORRECT ONE.

1. Ij‘ If f has antiderivative over a region then f is analytic there. ('F F on & FCS(W SO 1: 15
2. - An analytic function is infinitely differentiable. C\T‘Ol\gk\(, y S0 1o ’E>

3. m Given a sequence (ay,,),ez+ of distinct points in C if there is an entire function g satisfying g(1 / n) = a

for every n € Z*, then such a g is unique. ( { W were SOWIQ, o'U/\Q['
Hnon (F\-g) (Yalzo ¥n).

2. Let Cg denote the positively oriented circle centered at 0 with radius R. Write the results (in the form
a + ib) in the boxes provided. (Each box takes either full or no points.)
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3. (a) Find a power series o(w) = Z »(w — 2)" that equals f(w) = 1/w in a disk neighborhood of 2 € C.

What is the largest disk A C C Where o(w)=f (w)7
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(b) Recall that a contour integral of a power series (in the disk of convergence) can be performed term by term.
For any point z € A and a contour € C A from 2 to z, consider the contour integrals
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Evaluating both sides, obtain a power series for Log z around 2 in A. (Helping remarks: e Log z is the P.V. of
log with branch cut the nonpositive real numbers. o After evaluating each integral above, w should disappear. The results

must be a function of z)
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4. Consider the function g(z) = 1/2%. Using the result of (3a) above find a power series centered at z = 2
and determine its radius of convergence. Explain your work. (Warning: Do not compute the Taylor expansion

by explicit comput ation.)
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5. Suppose f is entire and |f(2)] < A+ B|z|?/2. Show that f is a linear polynomial, i.e. its degree is at most
1. (Ahlp At some point the triangle inequality in the e direction might be hndy)
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6. (a) Find the Maclaurin series for sin z by recursively computing the derivatives. Determine the radius of
convergence.
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(b) Find a power series in the form ) 7  ¢,2" for the function h(z) = S 2

,z # 0. Tell very carefully
z

how and why h can be extended to an entlre function.
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