Boğaziçi University
Department of Mathematics
Math 338 Complex Analysis Spring 2024 - Second Midterm

1	2	3	4	5	6	\sum
15 pts	10 pts	$10+12 \mathrm{pts}$	18 pts	20 pts	$8+8 \mathrm{pts}$	101 pts

Date: April 30, 2024
Time: 13:00-15:00
You may use every fact that we have already proven in the class. A
two for your convenience:
Cauchy Integral Formula: If f is analytic on and inside a positively oriented
a point in the interior of \mathcal{C} then $f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{\mathfrak{C}} \frac{f(z) d z}{(z-a)^{n+1}}$ for every $n \in \mathbb{Z}^{\geq 0}$.
Extended Liouville Theorem: If f is entire and if $|f(z)| \leq A+B|z|^{k}$ for some $k \in \mathbb{Z}^{\geq 0} ; A, B \in \mathbb{R}^{>0}$ then f is a polynomial of degree at most k.

1. Mark the statements below as TRUE or FALSE. No justification is needed in this part. EACH INCORRECT ANSWER CANCELS A CORRECT ONE.
2. \square T If f has antiderivative over a region then f is analytic there. $\left(f=F^{\prime}\right.$ on a region. So
arollytic, so is $f)$.
3. \square An analytic function is infinitely differentiable.
4. \square Given a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}^{+}}$of distinct points in \mathbb{C} if there is an entire function g satisfying $g(1 / n)=a_{n}$ So r every $n \in Z^{t}$, then such a, is monique. (if
then $h-g)(1 / n)=0 \quad \forall n)$.
5. Let \mathcal{C}_{R} denote the positively oriented circle centered at 0 with radius R. Write the results (in the form $a+i b)$ in the boxes provided. (Each box takes either full or no points.)

$$
\begin{aligned}
& \int_{\mathrm{e}_{1 / 2}} \frac{\cosh z d z}{(z-i \pi / 4)^{3}}=\square \\
& { }^{2} \text { oralytic is inside } C_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 11 \\
& \frac{2 \pi i}{2!} \cdot \underbrace{(\cosh)^{\prime \prime}\left(i \frac{\pi}{4}\right)} \\
& =\operatorname{Cosh}(i \pi / 4) \\
& =\frac{1}{2}\left(e^{(i \pi / 4}+e^{-i \pi / 4}\right) \\
& =\cos \pi / 4=\sqrt{2} / 2
\end{aligned}
$$

3. (a) Find a power series $\sigma(w)=\sum_{n=0}^{\infty} a_{n}(w-2)^{n}$ that equals $f(w)=1 / w$ in a disk neighborhood of $2 \in \mathbb{C}$. What is the largest disk $\Delta \subset \mathbb{C}$ where $\sigma(w)=f(w)$?

$$
\begin{gathered}
\frac{1}{w}=\frac{1}{\omega-2+2}=\frac{1}{2} \cdot \frac{1}{1+\frac{w-2}{2}}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\omega-2}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(w-2)^{n} \\
\text { d when lw-2k2 } \\
\text { this is the largest } \\
\text { disk since at } w=0,
\end{gathered}
$$ f is not defined.

(b) Recall that a contour integral of a power series (in the disk of convergence) can be performed term by term. For any point $z \in \Delta$ and a contour $\mathcal{C} \subset \Delta$ from 2 to z, consider the contour integrals

$$
\int_{C} \sigma(w) d w=\int_{C} f(w) d w
$$

Evaluating both sides, obtain a power series for $\log z$ around 2 in Δ. (Helping remarks: $\bullet \log z$ is the P.V. of log with branch cut the nonpositive real numbers. - After evaluating each integral above, w should disappear. The results must be a function of z.)

Recall: $\frac{d}{d z} \log z=\frac{1}{z}$. Therefore for C as above,

$$
\int_{c} f(\omega) d \omega=\log z-\log 2
$$

meanwhile,

$$
\begin{aligned}
\int_{C} \sigma(\omega) d \omega & =\sum_{n=0}^{\infty} a_{n}\left((\omega-2)^{n} d \omega=\left.\sum a_{n} \frac{(w-2)^{n+1}}{n+1}\right|_{\omega=2} ^{\omega=z}\right. \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}(n+1)}(z-2)^{n+1}
\end{aligned}
$$

Hence, $\log z=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n} \cdot n}(z-2)^{n}$
4. Consider the function $g(z)=1 / z^{2}$. Using the result of (3a) above find a power series centered at $z=2$ and determine its radius of convergence. Explain your work. (Warning: Do not compute the Taylor expansion

By (Ba), $\frac{1}{z}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(z-2)^{n}$ on Δ. Then $-\frac{1}{z^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot n}{2^{n+1}}(z-2)^{n-1}$. Hence $\frac{1}{z^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot(n+1)}{2^{n+2}}$ since R is pres since R is preserved under derivation.
5. Suppose f is entire and $|f(z)| \leq A+B|z|^{3 / 2}$. Show that f is a linear polynomial, i.e. its degree is at most

1. (A help: At some point the triangle inequality in the reverse direction might be handy.)

By extended Liouville $f(z)=a+b z+c z^{2}$, for some $a, b, c \in \mathbb{C}$ Assume $c \neq 0$
Then $\left.0\langle | c|\cdot| z\right|^{2}-|a|-|b| \cdot|z| \leqslant|f(z)| \leqslant A+B|z|^{3 / 2}$
for $|c|>08|z|$ large tribrgle ing given
So for every large $|z|,|c| \cdot|z|^{2} \leqslant A^{\prime}+|b| \cdot|z|+B|z|^{3 / 2}$ which is impossible. Hence C must be 0 .
6. (a) Find the Maclaurin series for $\sin z$ by recursively computing the derivatives. Determine the radius of convergence.
Standard computation... Let's do it once more:

$$
\begin{aligned}
s(z)=\sin z, & s(0)=0, s^{\prime}(0)=1, s^{\prime \prime}(0)=0, s^{\prime \prime \prime}(0)=-1 \\
& s^{(4 k)}(0)=0 ;=s^{(4 k+1)}(0) ;=s^{(4 k+1)}(0) ; \quad s^{\prime \prime}(4 k+3)(0) \\
& \text { So } \sin z=\sum_{n=0}^{\infty} \frac{s^{(n)}(0)}{n!} z^{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}
\end{aligned}
$$

$R=\infty$, since sink is entire.
(b) Find a power series in the form $\sum_{n=0}^{\infty} c_{n} z^{n}$ for the function $h(z)=\frac{\sin z}{z}, z \neq 0$. Tell very carefully how and why h can be extended to an entire function.

$$
h(z)=\frac{\sin z}{z}=\sum_{k=0}^{\infty} \frac{(-1)^{2}}{(2 k+1)!} z^{2 k} \quad(z \neq 0)
$$

However the RHS is 1 at $z=0$. So the extension $\tilde{h}(z)=\left\{\begin{array}{cc}h(z) & , z \neq 0 \\ 1, & z=0\end{array}\right.$ is entire, being a power series with $R=\infty$.

