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1.
2.
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4. On a smooth (orientable) surface in R3,
D.

D

1. TRUE or FALSE. No justification needed. An incorrect answer cancels a correct one.

@ If S C R¥ is bounded and f : S — R is integrable then |f| is integrable over S too. A {Womm) P{D\en
E Every bounded open set in R¥ is J. measurable. SQQ M\CD(C( lﬂ/“O\a.

E A continuous function on a compact subset of R¥ is integrable. —“\b{t af® ¢

there are exactly two possible orientations.
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[:' Given any divergent infinite series (a,) and any real number ¢, there is a rearrangement of (a, ) with
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series sum equal to t.

convergent on £ too.

) and > gn(x) are uniformly convergent on £ C RF then > f,(z) + gn(x) is uniformly

2. Tell 5 instances that you learned in Advanced Calculus where you can swap two operations/processes (i.e.
taking limits, derivatives, integrals, infinite sequences and series). Write your claims and express carefully
and very shortly when each is valid. You can refer any of these as lemmas in the following questions.
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3. (a) [10pts] Check convergence: Z i \/ﬁ
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(b) [15pts] Determine the values of = at which the series converges absolutely or conditionally:
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4. Lambert series. Suppose ¢, € R and )" ° ¢, converges. Consider for x € R — {£1} the series
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(L) chl_zn.

In your answers below state carefully what facts you use, step by step.
(a) [6] Show that for any 0 < a < 1, (L) converges absolutely and uniformly on [—a, +a].
(b) [10] Show that for any b > 1, (L) converges uniformly on (—oo, —b] and [+b, +00). (Hint: Considering

part (c), apparently no direct application of Weierstrass M-test here. Instead observe that % = # —1.
Now express the series as the sum of two infinite series and investigate each.)

(c) [6] Show that in part (b) the convergence is absolute if and only if Y 7° ¢, converges absolutely. (Hint:
You need to prove a small lemma to conclude.)

(d) [6] Let s(x) denote the series sum of (L), whenever the sum is finite. What is the domain of s? At
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5. Consider the series g _
22— n2

Do either (a) or (a’), not both! State carefully what facts you use, step
1

by step.
(a) [8pts] Show the series converges uniformly on (—1,+1).

(a”) [12pts] Show the series converges uniformly on any compact interval that does not contain a nonzero
integer.
[o.¢]

(b) [13pts] For z € (—1,+1) let f(z) = xgz 1

2 —n2’

whenever defined. What is the domain A of f?
1
Show that f is C* on A. Compute f'(z) on A.
>
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