

Date:	May 13th, 2025	Full Name:
Time:	17:00-18:40	

- 1. TRUE or FALSE. Either prove or refute. Refuting is a proof; you can do this by giving a counterexample.
 - A. Let $g: S \to \mathbb{R}$ be a continuous and bounded function over some bounded Jordan measurable set $S \subset \mathbb{R}^2$. Then there is some $x_0 \in S$ satisfying

$$g(\mathbf{x}_0) \cdot \operatorname{area}(S) = \iint_S g(\mathbf{x}) dA.$$

- FALSE. For connected S, this would be the Mean Value Thrn for integrals Produce a counterexample where S is disconnected.
 - B. Let $\emptyset \neq V \subset U \subset \mathbb{R}^2$ be open sets with $cl(V) \subset U$, $F : U \to \mathbb{R}^2$ be a C^1 function, $DF(\mathbf{x})$ be nonsingular for all $\mathbf{x} \in V$. Then $F(\partial V) = \partial F(V)$. $F(\mathcal{P})$

FALSE.
$$U = R^{2} - \{0\} > V = \{I \le n^{2} + y^{2} \le 4\}, F : (n, y) \rightarrow (r \cos 4\theta, r \sin 4\theta)$$

C. If $\int_{0}^{\infty} f(x) dx$ is convergent then $f(x)$ goes to 0 as $x \to \infty$.
FALSE. $f: [0, \infty) \rightarrow \mathbb{R}$
 $\frac{1}{1} + \frac{1}{2} + \frac{1}{$

2. Consider a subset S of \mathbb{R}^2 and a bounding rectangle $R \stackrel{\frown}{\supset} S$. For any partition P of R the upper sum of the characteristic function χ_S of S is defined, as you know. Recall that the outer area of S is the infimum of all such upper sums over all possible partitions.

R (a) [16pts] Prove: S and cl(S) have the same ofter area. In the figure, the yellow rectangles of P		
fouch S, and the red rectangles		
1 - Rij touch 25 (and not 5).		
If R: N∂S × Ø then these are the two		
possible cases. In yellow case Riji counts in		
P. S the upper sum of both S& cl(S).		
In the red case InEBS, nEB, rEBR;;		
Here construct a refinement P' of P s.t. such x's		
are covered by rectangles of total area $< E'$ (can be done since ∂R_{ij} has O measure). For this P', the upper sums differ by $< E$.		
ƏRij has O'measure). For this P', the upper sums differ by <e.< td=""></e.<>		
270 is arbitrary. So we're done.		

• When S is nonempty open in (a), $cl(S) - S = \partial S$ • It's known S is J. measurable \Rightarrow (outer -inner) can be made arbitrarily • But the converse need not be true even if S is open. • $\partial^2 \Lambda [0,1]^2 \subset \mathbb{R}^2$ has $\partial = [0,1]^2$, which has not goo J. measure.

