Boğaziçi University Department of Mathematics	1	2	3	4	\sum
Math 234 Advanced Calculus II					
Spring 2025 – Second Midterm	30 pts	24 pts	24 pts	24 pts	100 pts
Exam: 50 pts 24 pts 24 pts 100 pts					
Date: May 6, 2025 Full	Name: 🚺	DINDA	(T)	(VIIIT	N IC

Below all curves and surfaces that appear are orientable and nice enough. Figures are from Thomas'.

KUDTV MILLION

1. (a) [2pts] What does an orientation mean on a surface $S \subset \mathbb{R}^3$?

17:00-18:45

Time:

- (b) [2pts] What is the induced orientation on the boundary of an oriented surface?
- (c) [8pts] State Stokes's Theorem in \mathbb{R}^3 . Explain every object that appears in the expression.

TRUE or FALSE... 6 points each... Either justify shortly or refute. Refuting is a proof; you can do this by giving a counterexample. Here $\Omega \subset \mathbb{R}^2$ open, $f : \Omega \to \mathbb{R}$, $\mathbf{F} : \Omega \to \mathbb{R}^2$; $D \subset \mathbb{R}^3$ open, $g : D \to \mathbb{R}$. The functions all are many times differentiable.

(d) If f is the div of some vector field \mathbf{F} then grad $f = \mathbf{0}$.

FALSE:
$$\vec{F} = (n^2, y^2)$$
, $f = div \vec{F} = 2n + 2y$, $grad f = (2, 2) \neq 0$.

(e) If S is a closed surface (i.e. S is topologically closed with $\partial S = \emptyset$) then the flux of any vector field through S is zero.

FALSE:
$$\vec{F}(n,y,z) = (n,y,z)/|(n,y,z)||_{1}$$
 S= unit sphere,
oriented outwards
 $\iint \vec{F} \cdot \vec{n} dA = \iint dA = 4\pi \neq 0.$

(f) If curl $\mathbf{G} = 0$ then for some function g, $\mathbf{G} = \operatorname{grad} g$ on $D \subset \mathbb{R}^3$.

FALSE: Existence of g depends on the topology of D.
Let
$$G = \left(\frac{-y}{\pi^2 + y^2}, \frac{\pi}{\pi^2 + y^2}, 0\right)$$
. (Here dom $G_1 = \mathbb{R}^3 - \{2 - axis\}$)
 $\int_{not}^{not} simply connected$
 $curl G = (O_m - P_y) \vec{k} = \frac{2}{\pi^2 + y^2} + \frac{-2\pi^2}{(\pi^2 + y)^2} + \frac{-2y^2}{(\pi^2 + y)^2} = 0$
However, for $C = \{\pi^2 + y^2 = 1, 2 = 0\}$ oriented positively,
 $\int_{c} \vec{G} \cdot d\vec{x} = \int_{c}^{2T} \left(\frac{-s\theta}{1} (C\theta)' + \frac{C\theta}{1}, (s\theta)'\right) d\theta = 2T \neq 0$
Hence \vec{G} is not conservative. \vec{G} cannot be a gradient.

2. Find the work done by the vector field $\mathbf{H} = \mathbf{i} + z\mathbf{j} - z/4\mathbf{k}$ along the curve \mathcal{C} on the cone in the figure, which projects down to the boundary of a planar 2-disk. The curve \mathcal{C} is oriented as in the figure.

Parametrine C respecting the orientation:

$$V_{2n} = NAC^{2}\theta$$

$$\theta \in [-\frac{1}{2}, \frac{1}{2}], \times (\theta) = (rC\theta, rS\theta, \sqrt{Ax^{2} + Ay^{2}})$$

$$= (2C^{2}\theta, 2C\thetaS\theta, 4C\theta)$$

$$x^{2} + y^{2} = 2x$$

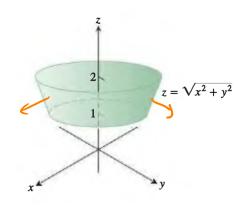
$$\chi'(\theta) = (AC\theta(-S\theta), 2C2\theta, -4S\theta)$$

$$\frac{\pi/2}{\int H \cdot dx} = \int (1, 4C\theta, -\frac{4C\theta}{4}) \cdot \times (\theta) d\theta$$

$$= \int (4C\thetaS\theta + 8C\theta \cdot C_{2}\theta + 4C\thetaS\theta) d\theta$$

$$= 8 \cdot \int_{-\pi/2}^{+\pi/2} C\theta (1 - 2S^{2}\theta) d\theta = 8 (2 - \frac{2}{3}S^{3}\theta) \Big|_{-\pi/2}^{\pi/2})$$

$$= \frac{16}{3}$$



3. (a) Consider the **outwards** oriented surface K in the figure (a portion of a cone, called a *cone frustum*). K is a surface with boundary, which is the disjoint union of two circles.

Determine a one-to-one C^1 parametrization φ [6 pts] for (at least a portion of) K supplying the given orientation [6 pts], and with the condition that the domain of φ is open in \mathbb{R}^2 . What is the domain of your parametrization?

$$\varphi: \stackrel{\circ}{\bigcap} = \{1 \langle u_{+}^{2} v^{2} \langle 4 \} \rightarrow \mathbb{R}^{3}$$

$$\varphi(u,v) = (-u, v, \sqrt{u^{2} + v^{2}})$$

$$\varphi(u,v) = (-u, v, \sqrt{u^{2} + v^{2}})$$

$$\psi_{this} \text{ provides the right orientation.}$$

$$Note: \varphi_{u} = (-1, 0, \sqrt{\sqrt{u^{2} + v^{2}}}), \quad \varphi_{v} = (0, 1, \sqrt{\sqrt{v}})$$

$$\varphi_{u} \times \varphi_{v} = (-1, 0, \sqrt{\sqrt{v}}), \quad \varphi_{v} = (0, 1, \sqrt{\sqrt{v}})$$

$$\varphi_{u} \times \varphi_{v} = (-1, 0, \sqrt{\sqrt{v}}), \quad \varphi_{v} = (-1, 0, \sqrt{\sqrt{v}})$$

$$\varphi_{u} \times \varphi_{v} = (-1, 0, \sqrt{\sqrt{v}}), \quad \varphi_{v} = (-1, 0, \sqrt{\sqrt{v}}), \quad \varphi_{v} = (0, 1, \sqrt{\sqrt{v}})$$

(b) Compute the area of K using a surface integral. (OK, everybody knows the result from high school. Here I want you to compute the area using math234 technology.)

area(K) =
$$\iint dA = \iint \| \mathcal{Q}_u \times \mathcal{Q}_v \| dA_{u,v}$$

$$= \iint \left(1 + \frac{u^2}{u^2 + v^2} + \frac{v^2}{u^2 + v^2} \right)^{1/2} du dv = \left[2 \left(4\pi - \pi \right) = 3\sqrt{2}\pi \right]$$
Observe that we take the integral area the closure of $S_{u,v}$

Nevertheless $\iint = \iint$ since $\partial \mathcal{L}$ has zero \mathcal{J} . measure. $\overline{\mathcal{L}} = \mathcal{L}$ 4. Consider the surface K in the previous question. We build a closed surface Σ by gluing a pair of horizontal 2-disks to K along their boundaries. Then we orient Σ **outwards**. Now compute the flux

$$\iint_{\Sigma} G \cdot n \, dA$$

for the vector field $G = (x^2 + \tan(yz/4))\mathbf{i} + (e^{x^2z} - 2xy)\mathbf{j} + xz\mathbf{k}.$
Observe G is defined in $W \stackrel{\text{def}}{=}$ solid bounded by Σ .
Moreover Σ is oriented correctly. Then we can use
Divergence thm:
$$\iint_{\Sigma} G \cdot n = \iint_{U} divG \, dV$$
$$W$$
$$divG = 2n - 2n + n = \iint_{\Sigma} x \, dV = \int_{U}^{2} \int_{0}^{2\pi} x \cdot r \, dr \, d\theta \, dz$$
$$\underset{U}{V} = \iint_{U} x \, dV = 0$$